The exponential-type generating function of the Riemann zeta-function revisited

被引:0
|
作者
Takumi Noda
机构
[1] Nihon University,College of Engineering
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Generating function; Riemann zeta-function; Holomorphic Poincaré series; 11M41; 11F11;
D O I
暂无
中图分类号
学科分类号
摘要
Dirichlet series associated with the Poincaré series attached to SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SL}(2,{{\mathbb {Z}}})$$\end{document} are introduced. Integral representations and transformation formulas are given, which describe the Voronoï-type summation formula for the exponential-type generating function of the Riemann zeta-function. As an application, a new proof of the Fourier series expansion of holomorphic Poincaré series is given.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条