Microfluidic-assisted analysis of replicating DNA molecules

被引:0
|
作者
Julia M Sidorova
Nianzhen Li
David C Schwartz
Albert Folch
Raymond J Monnat Jr
机构
[1] University of Washington,Department of Pathology
[2] University of Washington,Department of Bioengineering
[3] Laboratory for Molecular and Computational Genomics,Departments of Genetics and Chemistry and UW
[4] University of Wisconsin-Madison,Biotechnology Center
[5] University of Washington,Department of Genome Sciences
[6] Present address: Fluxion Biosciences,undefined
[7] South San Francisco,undefined
[8] California,undefined
[9] USA.,undefined
来源
Nature Protocols | 2009年 / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single molecule-based protocols have been gaining popularity as a way to visualize DNA replication at the global genomic- and locus-specific levels. These protocols take advantage of the ability of many organisms to incorporate nucleoside analogs during DNA replication, together with a method to display stretched DNA on glass for immunostaining and microscopy. We describe here a microfluidic platform that can be used to stretch and to capture labeled DNA molecules for replication analyses. This platform consists of parallel arrays of three-sided, 3- or 4-μm high, variable-width capillary channels fabricated from polydimethylsiloxane by conventional soft lithography, and of silane-modified glass coverslips to reversibly seal the open side of the channels. Capillary tension in these microchannels facilitates DNA loading, stretching and glass coverslip deposition from microliter-scale DNA samples. The simplicity and extensibility of this platform should facilitate DNA replication analyses using small samples from a variety of biological and clinical sources.
引用
收藏
页码:849 / 861
页数:12
相关论文
共 50 条
  • [1] Microfluidic-assisted analysis of replicating DNA molecules
    Sidorova, Julia M.
    Li, Nianzhen
    Schwartz, David C.
    Folch, Albert
    Monnat, Raymond J., Jr.
    NATURE PROTOCOLS, 2009, 4 (06) : 849 - 861
  • [2] Microfluidic-assisted synthesis of polymer particles
    Serra, Christophe A.
    Chang, Zhenqi
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (08) : 1099 - 1115
  • [3] Capillary Microfluidic-Assisted Surface Structuring
    Li, Wei
    Sheng, Wenbo
    Wegener, Erik
    Du, Yunhao
    Li, Bin
    Zhang, Tao
    Jordan, Rainer
    ACS MACRO LETTERS, 2020, 9 (03) : 328 - 333
  • [4] Evaluation of the Benefits of Microfluidic-Assisted Preparation of Polymeric Nanoparticles for DNA Delivery
    Zoqlam, Randa
    Morris, Chris J.
    Akbar, Mohammad
    Alkilany, Alaaldin M.
    Hamdallah, Sherif I.
    Belton, Peter
    Qi, Sheng
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 127
  • [5] Application of the microfluidic-assisted replication track analysis to measure DNA repair in human and mouse cells
    Welcsh, Piri
    Kehrli, Keffy
    Lazarchuk, Pavlo
    Ladiges, Warren
    Sidorova, Julia
    METHODS, 2016, 108 : 99 - 110
  • [6] Microfluidic-assisted growth of colloidal crystals
    Merlin, Aurore
    Salmon, Jean-Baptiste
    Leng, Jacques
    SOFT MATTER, 2012, 8 (13) : 3526 - 3537
  • [7] Microfluidic-assisted bacteriophage encapsulation into liposomes
    Leung, Sharon S. Y.
    Morales, Sandra
    Britton, Warwick
    Kutter, Elizabeth
    Chan, Hak-Kim
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 545 (1-2) : 176 - 182
  • [8] Microfluidic-assisted silk nanoparticle tuning
    Wongpinyochit, Thidarat
    Totten, John D.
    Johnston, Blair F.
    Seib, F. Philipp
    NANOSCALE ADVANCES, 2019, 1 (02): : 873 - 883
  • [9] Microfluidic-assisted fiber production: Potentials, limitations, and prospects
    Abrishamkar, Afshin
    Nilghaz, Azadeh
    Saadatmand, Maryam
    Naeimirad, Mohammadreza
    deMello, Andrew J.
    BIOMICROFLUIDICS, 2022, 16 (06)
  • [10] Microfluidic-assisted fabrication of carriers for controlled drug delivery
    Liu, Dongfei
    Zhang, Hongbo
    Fontana, Flavia
    Hirvonen, Jouni T.
    Santos, Helder A.
    LAB ON A CHIP, 2017, 17 (11) : 1856 - 1883