A flexible and lightweight deep learning weather forecasting model

被引:0
|
作者
Gabriel Zenkner
Salvador Navarro-Martinez
机构
[1] Imperial College London,Department Mechanical Engineering
来源
Applied Intelligence | 2023年 / 53卷
关键词
Recurrent Neural Network; Bi-LSTM; Weather Forecast;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical weather prediction is an established weather forecasting technique in which equations describing wind, temperature, pressure and humidity are solved using the current atmospheric state as input. This study examines deep learning to forecast weather given historical data from two London-based locations. Two distinct Bi-LSTM recurrent neural network models were developed in the TensorFlow deep learning framework and trained to make predictions in the next 24 and 72 h, given the past 120 h. The first trained neural network predicted temperature at Kew Gardens with a forecast accuracy of ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm$$\end{document} 2 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\circ }$$\end{document} C in 73% of instances in a whole unseen year, and a root mean squared errors of 1.45 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\circ }$$\end{document} C. The second network predicted 72-h air temperature and relative humidity at Heathrow with root mean squared errors 2.26 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\circ }$$\end{document} C and 14% respectively and 80% of the temperature predictions were within ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm$$\end{document} 3 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\circ }$$\end{document} C while 80% of relative humidity predictions were within ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm$$\end{document} 20%. Both networks were trained with five years of historical data, with cloud training times of over a minute (24-h network) and three minutes (72-h).
引用
收藏
页码:24991 / 25002
页数:11
相关论文
共 50 条
  • [1] A flexible and lightweight deep learning weather forecasting model
    Zenkner, Gabriel
    Navarro-Martinez, Salvador
    [J]. APPLIED INTELLIGENCE, 2023, 53 (21) : 24991 - 25002
  • [2] A Deep Hybrid Model for Weather Forecasting
    Grover, Aditya
    Kapoor, Ashish
    Horvitz, Eric
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 379 - 386
  • [3] Forecasting the Weather of Nevada: A Deep Learning Approach
    Hossain, Moinul
    Rekabdar, Banafsheh
    Louis, Sushil J.
    Dascalu, Sergiu
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] Weather Forecasting using Deep Learning Techniques
    Salman, Man Galih
    Kanigoro, Bayu
    Heryadi, Yaya
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2015, : 281 - 285
  • [5] Deep shared representation learning for weather elements forecasting
    Mehrkanoon, Siamak
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 179 : 120 - 128
  • [6] A Flexible Deep Learning Method for Energy Forecasting
    Taleb, Ihab
    Guerard, Guillaume
    Fauberteau, Frederic
    Nga Nguyen
    [J]. ENERGIES, 2022, 15 (11)
  • [7] Deep learning-based effective fine-grained weather forecasting model
    Hewage, Pradeep
    Trovati, Marcello
    Pereira, Ella
    Behera, Ardhendu
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (01) : 343 - 366
  • [8] Deep learning-based effective fine-grained weather forecasting model
    Pradeep Hewage
    Marcello Trovati
    Ella Pereira
    Ardhendu Behera
    [J]. Pattern Analysis and Applications, 2021, 24 : 343 - 366
  • [10] Lightweight Deep Learning with Model Compression
    Kang, U.
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III, 2021, 12683 : 662 - 663