Ground State Homoclinic Orbits for First-Order Hamiltonian System

被引:1
|
作者
Wen Zhang
Jian Zhang
Xianhua Tang
机构
[1] Hunan University of Commerce,School of Mathematics and Statistics
[2] Central South University,School of Mathematics and Statistics
关键词
Hamiltonian system; Ground state homoclinic orbits; Exponential decay; Variational methods; 37J45; 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following first-order Hamiltonian system z˙=JHz(t,z).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{z}=\mathscr {J}H_{z}(t,z). \end{aligned}$$\end{document}Under some suitable conditions on the nonlinearity, we establish the existence of ground state homoclinic orbits by using variational methods. Moreover, we also explore some properties of these homoclinic orbits, such as compactness of set of and exponential decay of ground state homoclinic orbits.
引用
收藏
页码:1163 / 1182
页数:19
相关论文
共 50 条
  • [1] Ground State Homoclinic Orbits for First-Order Hamiltonian System
    Zhang, Wen
    Zhang, Jian
    Tang, Xianhua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1163 - 1182
  • [2] HOMOCLINIC ORBITS FOR THE FIRST-ORDER HAMILTONIAN SYSTEM WITH SUPERQUADRATIC NONLINEARITY
    Zhang, Wen
    Tang, Xianhua
    Zhang, Jian
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 673 - 690
  • [3] HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS
    DING, YH
    LI, SJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) : 585 - 601
  • [4] HOMOCLINIC ORBITS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Batkam, Cyril Joel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3353 - 3369
  • [5] THE EXISTENCE OF HOMOCLINIC ORBITS FOR A CLASS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Guo, Chengjun
    Agarwal, Ravi P.
    Wang, Chengjiang
    O'Regan, Donal
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2014, 61 : 83 - 102
  • [6] Homoclinic orbits for first-order Hamiltonian system with local super-quadratic growth condition
    Zhang, Wen
    Yang, Gang
    Liao, Fangfang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (04) : 988 - 1011
  • [8] Odd Homoclinic Orbits for a Second Order Hamiltonian System
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    Soares, Sergio H. M.
    ADVANCED NONLINEAR STUDIES, 2012, 12 (01) : 67 - 87
  • [9] A note on homoclinic orbits for second order hamiltonian system
    Wu S.P.
    Yang H.T.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (3) : 251 - 262
  • [10] GROUND STATE HOMOCLINIC SOLUTIONS FOR A SECOND-ORDER HAMILTONIAN SYSTEM
    Wang, Xiaoping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07): : 2163 - 2175