Global boundedness and large time behavior in a signal-dependent motility system with nonlinear signal consumption

被引:0
|
作者
Ya Tian
Guoqing Xie
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
关键词
Global existence; Boundedness; Signal-dependent motilities; Large time behavior; 35A01; 35B65; 35K65; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following system with nonlinear signal consumption ut=Δγvu+ru-μuα,x∈Ω,t>0,vt=Δv-uβv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} {u_t} = \Delta \left( {\gamma \left( v \right) u} \right) + ru - \mu {u^\alpha },\quad &{}x\in \Omega ,\quad &{}t>0,\\ {v_t} = \Delta v - {u^\beta }v,\quad &{}x\in \Omega ,\quad &{}t>0,\\ \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω∈Rnn≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in {\mathbb {R}^n} \left( {n \ge 2} \right) $$\end{document}. It shown that whenever r>0,μ>0,α>2,β>0andαβ>n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,\mu> 0,\alpha> 2, \beta> 0 \text { and } \frac{\alpha }{\beta } > \frac{{n + 2}}{2}$$\end{document}, then the original system will produce a global classical solution and the solution converges to equilibrium rμ1α-1,0ast→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( {{{\left( {\frac{r}{\mu }} \right) }^{\frac{1}{{\alpha - 1}}}},0} \right) \quad \text { as } t \rightarrow \infty . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Global boundedness and large time behavior in a signal-dependent motility system with nonlinear signal consumption
    Tian, Ya
    Xie, Guoqing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [2] Global boundedness and large time behavior of solutions to a chemotaxis–consumption system with signal-dependent motility
    Dan Li
    Jie Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [3] Boundedness and large time behavior for a chemotaxis system with signal-dependent motility and indirect signal consumption
    Li, Dan
    Li, Zhongping
    Zhao, Jie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [4] Boundedness and large time behavior of a signal-dependent motility system with nonlinear indirect signal production
    Tian, Ya
    Luo, Jing
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 6301 - 6319
  • [5] Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility
    Li, Dan
    Zhao, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [6] Global boundedness in a nonlinear signal consumption chemotaxis system with signal-dependent motility and logistic source
    Zhao, Quanyong
    Wang, Jinrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):
  • [7] Global boundedness in a chemotaxis system with signal-dependent motility and indirect signal consumption
    Zheng, Meng
    Wang, Liangchen
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [8] GLOBAL BOUNDEDNESS IN A CHEMOTAXIS SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND INDIRECT SIGNAL CONSUMPTION AND LOGISTIC SOURCE
    Zheng, Meng
    Wang, Liangchen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (06): : 1609 - 1624
  • [9] Global boundedness and asymptotic behavior in a chemotaxis system with signal-dependent motility and indirect signal absorption
    Ren, Guoqiang
    Shi, Yu
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (12):
  • [10] Boundedness and stabilization in the chemotaxis consumption model with signal-dependent motility
    Li, Xue
    Wang, Liangchen
    Pan, Xu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):