Composition Operators on Sobolev Spaces and Neumann Eigenvalues

被引:0
|
作者
V. Gol’dshtein
A. Ukhlov
机构
[1] Ben-Gurion University of the Negev,
来源
关键词
Sobolev spaces; Neumann eigenvalues; Quasiconformal mappings; 35P15; 46E35; 30C65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss applications of the geometric theory of composition operators on Sobolev spaces to the spectral theory of non-linear elliptic operators. Lower estimates of the first non-trivial Neumann eigenvalues of the p-Laplace operator in cusp domains Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb R^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, are given.
引用
收藏
页码:2781 / 2798
页数:17
相关论文
共 50 条