Nitrogen rhizodeposition of young wheat plants under elevated CO2 and drought stress

被引:0
|
作者
Joachim Schulze
Wolfgang Merbach
机构
[1] der Martin-Luther-Universität Halle-Wittenberg,Institut für Agrar–und Ernährungswissenschaften, Abteilung Pflanzenernährung
[2] der Georg-August-Universität Göttingen,Department für Nutzpflanzenwissenschaften, Abteilung Pflanzenernährung
来源
关键词
Drought stress; Elevated CO; N-rhizodeposition; Root exudation; Water use efficiency; Wheat;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this study was to determine the effect of drought stress and elevated CO2 concentrations around the shoots on N rhizodeposition of young wheat plants. In a pot experiment, the plant N pool was labeled through 15NH3 application to shoots at nontoxic NH3 concentrations, and the impact of low water supply (40% field capacity), elevated CO2 (720 μmol mol−1 CO2), and the combination of both factors on the 15N distribution was studied. Total 15N rhizodeposition ranged from 5 to 11% of the total 15N recovered in the plant/soil system. Elevated CO2 concentration as well as drought stress increased the belowground transport of N and increased the relative portion of N rhizodeposition on total 15N in the plant/soil system. However, while the increased N rhizodeposition with elevated CO2 was the result of increased total belowground N transport, drought stress additionally increased the portion of 15N found in rhizodeposition vs roots. Elevated CO2 intensified the effect of drought stress. The percentage of water soluble 15N in the 15N rhizodeposition was very low under all treatments, and it was significantly decreased by the drought-stressed treatments.
引用
下载
收藏
页码:417 / 423
页数:6
相关论文
共 50 条
  • [1] Nitrogen rhizodeposition of young wheat plants under elevated CO2 and drought stress
    Schulze, Joachim
    Merbach, Wolfgang
    BIOLOGY AND FERTILITY OF SOILS, 2008, 44 (03) : 417 - 423
  • [2] Elevated atmospheric CO2 alleviates drought stress in wheat
    Wall, GW
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 87 (03) : 261 - 271
  • [3] Elevated CO2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO2
    Alsherif, Emad A.
    AbdElgawad, Hamada
    PLANTS-BASEL, 2023, 12 (07):
  • [4] Rhizodeposition under ambient and elevated CO2 levels
    Darrah, PR
    PLANT AND SOIL, 1996, 187 (02) : 265 - 275
  • [5] Editorial: Modulation of Stomatal Response by Elevated CO2 in Plants Under Drought and Heat Stress
    Li, Xiangnan
    Palta, Jairo A.
    Liu, Fulai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Modelling a spring wheat crop under elevated CO2 and drought
    Grossman-Clarke, S
    Pinter, EJ
    Kartschall, T
    Kimball, BA
    Hunsaker, DJ
    Wall, GW
    Garcia, RL
    LaMorte, RL
    NEW PHYTOLOGIST, 2001, 150 (02) : 315 - 335
  • [7] Elevated CO2, drought and soil nitrogen effects on wheat grain quality
    Kimball, BA
    Morris, CF
    Pinter, PJ
    Wall, GW
    Hunsaker, DJ
    Adamsen, FJ
    LaMorte, RL
    Leavitt, SW
    Thompson, TL
    Matthias, AD
    Brooks, TJ
    NEW PHYTOLOGIST, 2001, 150 (02) : 295 - 303
  • [8] Impact of elevated atmospheric CO2 on the wheat rhizomicrobiome under the additional influence of warming, drought, and nitrogen fertilization
    Krause, Sascha M. B.
    Szoboszlay, Marton
    Dier, Markus
    Erbs, Martin
    Manderscheid, Remy
    Weigel, Hans-Joachim
    Tebbe, Christoph C.
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2023, 117
  • [9] Constraints to nitrogen acquisition of terrestrial plants under elevated CO2
    Feng, Zhaozhong
    Ruetting, Tobias
    Pleijel, Hakan
    Wallin, Goeran
    Reich, Peter B.
    Kammann, Claudia I.
    Newton, Paul C. D.
    Kobayashi, Kazuhiko
    Luo, Yunjian
    Uddling, Johan
    GLOBAL CHANGE BIOLOGY, 2015, 21 (08) : 3152 - 3168
  • [10] Physiological Responses of Plants to Combined Drought and Heat under Elevated CO2
    Abdelhakim, Lamis Osama Anwar
    Zhou, Rong
    Ottosen, Carl-Otto
    AGRONOMY-BASEL, 2022, 12 (10):