Crack detection by the electric method: Uniqueness and~approximation

被引:0
|
作者
Dang Dinh Ang
Dang Duc Trong
机构
来源
International Journal of Fracture | 1998年 / 93卷
关键词
crack detection; electric method; domain identification; Laplace equation; finite dimensional regularization.;
D O I
暂无
中图分类号
学科分类号
摘要
Let U be a bounded domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^2 $$ \end{document} the boundary ∂ U of which is a closed nonself-intersecting curve. Let ω be a hole (a crack) in the interior of U the boundary of which is a closed nonself-intersecting curve. Let U and ω be star-shaped. It is shown that the problem of finding a harmonic function u and its domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega = U\backslash \bar \omega (\bar \omega \equiv \omega {\text{ }} \cup {\text{ }}\partial \omega ) $$ \end{document}, subject to given Cauchy conditions on an open subset of ∂ U and to the condition ∂ u/∂n=0 on ∂ω has at most one solution. This uniqueness result shows that an insulating crack (e.g. one made up of air) can be identified by the electric method. The problem of determining ∂ω is an ill-posed problem; it is here regularized using finite dimensional approximations.
引用
收藏
页码:63 / 86
页数:23
相关论文
共 50 条
  • [1] Crack detection by the electric method: Uniqueness and approximation
    Ang, Dang Dinh
    Trong, Dang Duc
    International Journal of Fracture, 1999, 93 (01): : 63 - 86
  • [2] Crack detection by the electric method: Uniqueness and approximation
    Ang, DD
    Trong, DD
    INTERNATIONAL JOURNAL OF FRACTURE, 1998, 93 (1-4) : 63 - 86
  • [3] Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method
    Shin, Soon-Gi
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2013, 23 (02): : 149 - 153
  • [4] Gear crack detection using kernel function approximation
    Li, Weihua
    Shi, Tielin
    Ding, Kang
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 535 - 544
  • [5] On uniqueness of Chebyshev approximation
    Fedorov, VM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (04): : 31 - 36
  • [6] NEW METHOD OF ELECTRIC MEASUREMENT OF CRACK LENGTH
    BAUDIN, G
    POLICELLA, H
    RECHERCHE AEROSPATIALE, 1978, (04): : 195 - 203
  • [7] Crack Detection of Carbon Fiber Reinforced Composites by Electric Potential Method with Bridge Circuit Concept
    Hwang, Hui-Yun
    COMPOSITES RESEARCH, 2009, 22 (01): : 9 - 14
  • [8] Contour Integral Method for Crack Detection
    Kim, Woojae
    Kim, Nohyu
    Yang, Seung-Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2011, 31 (06) : 665 - 670
  • [9] OPTICAL METHOD FOR FATIGUE CRACK DETECTION
    PERNICK, BJ
    KENNEDY, J
    APPLIED OPTICS, 1980, 19 (18): : 3224 - 3229
  • [10] Connector Surface Crack Detection Method
    Yu Wenxi
    Xu Guili
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (14)