Deep learning in terrestrial conservation biology

被引:0
|
作者
Zoltán Barta
机构
[1] University of Debrecen,HUN
来源
Biologia Futura | 2023年 / 74卷
关键词
Camera traps; Passive acoustic monitoring; Satellite imagery; Social media; Biomonitoring; Deep artificial neural networks; Convolutional neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
Biodiversity is being lost at an unprecedented rate on Earth. As a first step to more effectively combat this process we need efficient methods to monitor biodiversity changes. Recent technological advance can provide powerful tools (e.g. camera traps, digital acoustic recorders, satellite imagery, social media records) that can speed up the collection of biological data. Nevertheless, the processing steps of the raw data served by these tools are still painstakingly slow. A new computer technology, deep learning based artificial intelligence, might, however, help. In this short and subjective review I oversee recent technological advances used in conservation biology, highlight problems of processing their data, shortly describe deep learning technology and show case studies of its use in conservation biology. Some of the limitations of the technology are also highlighted.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 50 条
  • [1] Deep learning in terrestrial conservation biology
    Barta, Zoltan
    BIOLOGIA FUTURA, 2023, 74 (04) : 359 - 367
  • [2] DEEP LEARNING FOR BIOLOGY
    Webb, Sarah
    NATURE, 2018, 554 (7693) : 555 - 557
  • [3] Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems
    Barnosky, Anthony D.
    Hadly, Elizabeth A.
    Gonzalez, Patrick
    Head, Jason
    Polly, P. David
    Lawing, A. Michelle
    Eronen, Jussi T.
    Ackerly, David D.
    Alex, Ken
    Biber, Eric
    Blois, Jessica
    Brashares, Justin
    Ceballos, Gerardo
    Davis, Edward
    Dietl, Gregory P.
    Dirzo, Rodolfo
    Doremus, Holly
    Fortelius, Mikael
    Greene, Harry W.
    Hellmann, Jessica
    Hickler, Thomas
    Jackson, Stephen T.
    Kemp, Melissa
    Koch, Paul L.
    Kremen, Claire
    Lindsey, Emily L.
    Looy, Cindy
    Marshall, Charles R.
    Mendenhall, Chase
    Mulch, Andreas
    Mychajliw, Alexis M.
    Nowak, Carsten
    Ramakrishnan, Uma
    Schnitzler, Jan
    Das Shrestha, Kashish
    Solari, Katherine
    Stegner, Lynn
    Stegner, M. Allison
    Stenseth, Nils Chr
    Wake, Marvalee H.
    Zhang, Zhibin
    SCIENCE, 2017, 355 (6325)
  • [4] Deep Learning for Reintegrating Biology
    Mueller, Rolf
    Han, Jin-Ping
    Chandrasekaran, Sriram
    Bogdan, Paul
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2022, 61 (06) : 2276 - 2281
  • [5] Deep learning for computational biology
    Angermueller, Christof
    Parnamaa, Tanel
    Parts, Leopold
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
  • [6] Deep learning for environmental conservation
    Lamba, Aakash
    Cassey, Phillip
    Segaran, Ramesh Raja
    Koh, Lian Pin
    CURRENT BIOLOGY, 2019, 29 (19) : R977 - R982
  • [7] CONSERVATION BIOLOGY - LEARNING FROM SAVING SPECIES
    DIAMOND, JM
    NATURE, 1990, 343 (6255) : 211 - 212
  • [8] Deep reinforcement learning for conservation decisions
    Lapeyrolerie, Marcus
    Chapman, Melissa S.
    Norman, Kari E. A.
    Boettiger, Carl
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (11): : 2649 - 2662
  • [9] Understanding Sequence Conservation With Deep Learning
    Li, Yi
    Quang, Daniel
    Xie, Xiaohui
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 400 - 406
  • [10] Evaluating Children's Conservation Biology Learning at the Zoo
    Jensen, Eric
    CONSERVATION BIOLOGY, 2014, 28 (04) : 1004 - 1011