On solutions of a class of three-point fractional boundary value problems

被引:0
|
作者
Zhanbing Bai
Yu Cheng
Sujing Sun
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Boundary value problems; Conformable fractional derivative; Nonlinear alternative of Leray–Schauder; 34B18; 35J05; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
Existence results for the three-point fractional boundary value problem Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ \end{document} are presented, where A,B∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A, B\in\mathbb{R}$\end{document}, 0<η<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta<1$\end{document}, 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}. Dαx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}x(t)$\end{document} is the conformable fractional derivative, and f:[0,1]×R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$\end{document} is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.
引用
收藏
相关论文
共 50 条