Local Feasible QP-Free Algorithms for the Constrained Minimization of SC1 Functions

被引:0
|
作者
F. Facchinei
C. Lazzari
机构
[1] Università di Roma–La Sapienza,Dipartimento di Informatica e Sistemistica
[2] Istituto di Analisi dei Sistemi ed Informatica,undefined
[3] CNR,undefined
关键词
Constrained optimization; feasible algorithms; SC; functions; superlinear convergence; strict complementarity; quasi-Newton methods;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of minimizing an SC1 function subject to inequality constraints. We propose a local algorithm whose distinguishing features are that: (a) a fast convergence rate is achieved under reasonable assumptions that do not include strict complementarity at the solution; (b) the solution of only linear systems is required at each iteration; (c) all the points generated are feasible. After analyzing a basic Newton algorithm, we propose some variants aimed at reducing the computational costs and, in particular, we consider a quasi-Newton version of the algorithm.
引用
收藏
页码:281 / 316
页数:35
相关论文
共 50 条
  • [1] Local feasible QP-free algorithms for the constrained minimization of SC1 functions
    Facchinei, F
    Lazzari, C
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (02) : 281 - 316
  • [2] New admissible algorithms and QP-free algorithms for constrained minimization of SC1 functions
    Lazzari, C
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 279 - 282
  • [3] An Improved Feasible QP-free Algorithm for Inequality Constrained Optimization
    Zhi Bin ZHU
    Jin Bao JIAN
    [J]. Acta Mathematica Sinica., 2012, 28 (12) - 2488
  • [4] An improved feasible QP-free algorithm for inequality constrained optimization
    Zhi Bin Zhu
    Jin Bao Jian
    [J]. Acta Mathematica Sinica, English Series, 2012, 28 : 2475 - 2488
  • [5] An Improved Feasible QP-free Algorithm for Inequality Constrained Optimization
    Zhi Bin ZHU
    Jin Bao JIAN
    [J]. Acta Mathematica Sinica,English Series, 2012, (12) : 2475 - 2488
  • [6] An improved feasible QP-free algorithm for inequality constrained optimization
    Zhu, Zhi Bin
    Jian, Jin Bao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (12) : 2475 - 2488
  • [7] A kind of QP-free feasible method
    Zhang, Haiyan
    Li, Guojun
    Zhao, Hongluan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 230 - 241
  • [8] A modified QP-free feasible method
    Wang, Hua
    Pu, Dingguo
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (04) : 1696 - 1708
  • [9] MINIMIZATION OF SC1 FUNCTIONS AND THE MARATOS EFFECT
    FACCHINEI, F
    [J]. OPERATIONS RESEARCH LETTERS, 1995, 17 (03) : 131 - 137
  • [10] An improved interior-type feasible QP-free algorithm for inequality constrained optimization problems
    Hu, Qing-Jie
    Ouyang, Zi-Sheng
    Chen, Yu
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (03) : 924 - 933