Symmetry of Ground States of Quasilinear Elliptic Equations

被引:0
|
作者
James Serrin
Henghui Zou
机构
[1] Department of Mathematics,
[2] University of Minnesota,undefined
[3] Minneapolis,undefined
[4] Minnesota 55455,undefined
[5] USA,undefined
[6] Department of Mathematics,undefined
[7] University of Alabama at Birmingham,undefined
[8] Birmingham,undefined
[9] Alabama,undefined
[10] USA,undefined
关键词
State Condition; Weak Solution; Elliptic Equation; Suitable Condition; Plane Method;
D O I
暂无
中图分类号
学科分类号
摘要
. We consider the problem of radial symmetry for non‐negative continuously differentiable weak solutions of elliptic equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {\rm div}(A(\vert Du\vert)Du) + f(u) = 0,\quad x\in {\vec R}^n, \quad n\geq 2,\eqno(1)$$\end{document} under the ground state condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ u(x)\to 0 \mbox{ as } \vert x\vert\to\infty. \eqno(2)$$\end{document} Using the well‐known moving plane method of Alexandrov and Serrin, we show, under suitable conditions on A and f, that all ground states of (1) are radially symmetric about some origin O in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\vec R}^n$\end{document}. In particular, we obtain radial symmetry for compactly supported ground states and give sufficient conditions for the positivity of ground states in terms of the given operator A and the nonlinearity f.
引用
收藏
页码:265 / 290
页数:25
相关论文
共 50 条