On abstract indefinite concave–convex problems and applications to quasilinear elliptic equations

被引:0
|
作者
Mabel Cuesta
Liamidi Leadi
机构
[1] Université Lille Nord de France,LMPA Joseph Liouville, FR CNRS Math. 2956
[2] Université d’Abomey-Calavi,Département de Mathématiques, Faculté des Sciences et Techniques Institut de Mathématiques et de Sciences Physiques
关键词
Concave–convex problem; Nehari manifold; Dirichlet–Steklov boundary condition; Elliptic problem; Non-coerciveness; p-Laplacian; p-bilaplacian; Indefinite weights; 35J20; 35J70; 35P05; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we study the existence of critical points of an abstractC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} functional J defined in a reflexive Banach space X. This functional is of the form J(u)=1pE(u)-1rA(u)-1qB(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} J(u)=\dfrac{1}{p}E(u)-\dfrac{1}{r}A(u)-\dfrac{1}{q}B(u), \end{aligned}$$\end{document}with E, A, B positive-homogeneous indefinite functional of degree p, q, r respectively and 1<p<q<r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q<r$$\end{document}. The critical points are found by minimization along several subsets of the Nehari manifold associated to J. We apply these results to various quasilinear elliptic problems, as for instance, the following p-laplacian concave–convex problem with Steklov boundary conditions on a bounded regular domain -Δpu+V(x)up-1=0inΩ;|∇u|p-2∂u∂ν=λa(x)ur-1+b(x)uq-1on∂Ω;u>0inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} -\Delta _p u+V(x)u^{p-1} =0&{} \text { in } \Omega ;\\ |\nabla u|^{p-2}\dfrac{\partial u}{\partial \nu }=\lambda a(x)u^{r-1} +b(x)u^{q-1}&{}\text { on }\partial \Omega ; \\ u>0 \text { in }\Omega , \end{array} \right. \end{aligned}$$\end{document}with given functions a, b, V possibly indefinite and 1<r<p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<r<p<q$$\end{document}. We also apply our abstract result for a concave–convex quasilinear problem associated to the p-bilaplacian.
引用
收藏
相关论文
共 50 条