A Trace Formula for a Class of Variable-Coefficient Block Toeplitz Matrices

被引:0
|
作者
Bin Shao
机构
[1] Department of Mathematics and Computer Science,
[2] Santa Clara University,undefined
[3] Santa Clara,undefined
[4] CA 95053,undefined
[5] USA. E-mail: bshao@math.scu.edu,undefined
来源
关键词
Keywords.((no keywords))¶Mathematics Subject Classification (2000). Primary 47; Secondary 46.;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with spectral asymptotics for variable coeefficient block Toeplitz matrices opns given by ¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frac{1}{2\pi}\int^{2\pi}_{0}\sigma(\frac{j}{n}, \theta)e^{-i(j-k)\theta} d\theta\qquad(j,k=0,1,\ldots, n), $\end{document}¶¶where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma(x,e^{i\theta}) $\end{document} is a matrix-valued function of fixed order defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ [0,1]\times\mathbb{T} $\end{document}. More precisely, we compute the second-order asymptotics of the trace of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f(\textrm{op}_{n},\sigma) $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f $\end{document} belongs to a suitable class of functions; ¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textrm{tr} f(\textrm{op}_{n},\sigma)=c_{1}\,n + c_{2}\,\textrm{log}\,n+o(\textrm{log}\,n) $\end{document}¶¶as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n\longrightarrow\infty $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}c_{1},\,c_{2}\end{document} are constants given by explicit formulas.
引用
收藏
页码:359 / 374
页数:15
相关论文
共 50 条