Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

被引:0
|
作者
Zhongxiang Zheng
Chunhuan Zhao
Guangwu Xu
机构
[1] Tsinghua University,Institute for Advanced Study
[2] Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education,School of Cyber Science and Technology
[3] Shandong University,Department of EE & CS
[4] University of Wisconsin-Milwaukee,undefined
关键词
Lattices; Discrete Gaussian measure; Lattice based cryptography; Smoothing parameter; 11H06; 11T71; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} is suitably small, we obtain two estimations of the smoothing parameter: ηε(Z)≤ln(ε44+2ε)π.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle \eta _{\varepsilon }({{\mathbb {Z}}}) \le \sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}. \end{aligned}$$\end{document} This is a practically useful case. For this case, our upper bound is very close to the exact value of ηε(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\varepsilon }({{\mathbb {Z}}})$$\end{document} in that ln(ε44+2ε)π-ηε(Z)≤ε2552\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}-\eta _{\varepsilon }({{\mathbb {Z}}})\le \frac{\varepsilon ^2}{552}$$\end{document}.For a lattice L⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {L}}}}\subset {{\mathbb {R}}}^n$$\end{document} of dimension n, ηε(L)≤ln(n-1+2nε)πbl~(L).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle \eta _{\varepsilon }({{{\mathcal {L}}}}) \le \sqrt{\frac{\ln \big (n-1+\frac{2n}{\varepsilon }\big )}{\pi }}\tilde{bl}({{{\mathcal {L}}}}). \end{aligned}$$\end{document}
引用
收藏
页码:637 / 650
页数:13
相关论文
共 50 条
  • [1] Discrete Gaussian measures and new bounds of the smoothing parameter for lattices
    Zheng, Zhongxiang
    Zhao, Chunhuan
    Xu, Guangwu
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (05) : 637 - 650
  • [2] Smoothing Codes and Lattices: Systematic Study and New Bounds
    Debris-Alazard, Thomas
    Ducas, Leo
    Resch, Nicolas
    Tillich, Jean-Pierre
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) : 6006 - 6027
  • [3] A New Discrete Gaussian Sampler over Orthogonal Lattices
    Xiao, Dianyan
    Yu, Yang
    Bi, Jingguo
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (11) : 1880 - 1887
  • [4] Discrete Approximations of Gaussian Smoothing and Gaussian Derivatives
    Lindeberg, Tony
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (05) : 759 - 800
  • [5] On Gaussian Sampling, Smoothing Parameter and Application to Signatures
    Espitau, Thomas
    Wallet, Alexandre
    Yu, Yang
    [J]. ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT VII, 2023, 14444 : 65 - 97
  • [6] Automatic determination of the spread parameter in Gaussian smoothing
    Lin, HC
    Wang, LL
    Yang, SN
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (12) : 1247 - 1252
  • [7] On the smoothing parameter and last minimum of random orthogonal lattices
    Elena Kirshanova
    Huyen Nguyen
    Damien Stehlé
    Alexandre Wallet
    [J]. Designs, Codes and Cryptography, 2020, 88 : 931 - 950
  • [8] On the smoothing parameter and last minimum of random orthogonal lattices
    Kirshanova, Elena
    Nguyen, Huyen
    Stehle, Damien
    Wallet, Alexandre
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 931 - 950
  • [9] Generalized Gaussian bounds for discrete convolution powers
    Coulombel, Jean-Francois
    Faye, Gregory
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1553 - 1604
  • [10] EXACT LOWER AND UPPER BOUNDS FOR GAUSSIAN MEASURES
    Pinelis, I.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 485 - 493