On groups acting freely on a tree

被引:0
|
作者
Ulrich Tipp
机构
[1] FB 9 Mathematik,
[2] Universität des Saarlandes,undefined
[3] Postfach 151150,undefined
[4] D-66041 Saarbrücken,undefined
[5] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Rational Function; Asymptotic Behavior; Growth Function;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose we are given a group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Gamma $\end{document} and a tree X on which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Gamma $\end{document} acts. Let d be the distance in the tree. Then we are interested in the asymptotic behavior of the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $a_d:= \# \{w\in {\rm {vert}}X : w=\gamma {v}, \gamma \in {\mit\Gamma} , d({v}_0,w)=d \}$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $d\rightarrow \infty $\end{document}, where v, vo are some fixed vertices in X.¶ In this paper we consider the case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Gamma $\end{document} is a finitely generated group acting freely on a tree X. The growth function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\textstyle\sum\limits a_d x^d$\end{document} is a rational function [3], which we describe explicitely. From this we get estimates for the radius of convergence of the series. For the cases where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Gamma $\end{document} is generated by one or two elements, we look a little bit closer at the denominator of this rational function. At the end we give one concrete example.
引用
收藏
页码:261 / 269
页数:8
相关论文
共 50 条
  • [1] On groups acting freely on a tree
    Tipp, U
    ARCHIV DER MATHEMATIK, 1999, 72 (04) : 261 - 269
  • [2] On the Shunkov groups acting freely on Abelian groups
    Sozutov, A. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (01) : 144 - 151
  • [3] On the Shunkov groups acting freely on Abelian groups
    A. I. Sozutov
    Siberian Mathematical Journal, 2013, 54 : 144 - 151
  • [4] On periodic groups acting freely on abelian groups
    Zhurtov, A. Kh.
    Lytkina, D. V.
    Mazurov, V. D.
    Sozutov, A. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 136 - 143
  • [5] Periodic groups acting freely on abelian groups
    Zhurtov, A. Kh.
    Lytkina, D. V.
    Mazurov, V. D.
    Sozutov, A. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S209 - S215
  • [6] Periodic groups acting freely on Abelian groups
    Lytkina D.V.
    Algebra and Logic, 2010, 49 (3) : 256 - 261
  • [7] Periodic groups acting freely on abelian groups
    A. Kh. Zhurtov
    D. V. Lytkina
    V. D. Mazurov
    A. I. Sozutov
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 209 - 215
  • [8] PERIODIC GROUPS ACTING FREELY ON ABELIAN GROUPS
    Lytkina, D. V.
    ALGEBRA AND LOGIC, 2010, 49 (03) : 256 - 261
  • [9] Self-similar groups acting essentially freely on the boundary of the binary rooted tree
    Grigorchuk, Rostislav
    Savchuk, Dmytro
    GROUP THEORY, COMBINATORICS, AND COMPUTING, 2014, 611 : 9 - +
  • [10] Quotients of buildings by groups acting freely on chambers
    Norledge, William
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (11)