Commutators with Coefficients in CMO of Weighted Hardy Operators in Generalized Local Morrey Spaces

被引:0
|
作者
Natasha Samko
机构
[1] Luleå University of Technology,
来源
关键词
Morrey space; weighted Hardy operator; commutators; BMO; local BMO; weighted Hardy inequalities; quasi-monotone weights; 46E30; 42B35; 42B25; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
We prove theorems on the boundedness of commutators [a,Hwα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a,H_w^\alpha ]$$\end{document} of the weighted multidimensional Hardy operator Hwα:=wHα1w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\alpha _w:= w H^\alpha \frac{1}{w}$$\end{document} from a generalized local Morrey space Lp,φ;0(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{p,\varphi ;0}({\mathbb {R}^n})$$\end{document} to local or global space Lq,ψ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{q,\psi }({\mathbb {R}^n})$$\end{document}. The main impacts of these theorems arethe use of CMOs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_s$$\end{document}-class of coefficients a for the commutators;the general setting when the function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} defining the Morrey space and the weight w are independent of one another and the weight w is not assumed to be in Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document};recovering the Sobolev–Adams exponent q instead of Sobolev–Spanne type exponent in the case of classical Morrey spacesboundedness from local to global Morrey spaces;the obtained estimates contain the parameter s>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s > 1$$\end{document} which may be arbitrarily chosen. Its choice regulates in fact an equilibrium between assumptions on the coefficient a and the characteristics of the space. The obtained results are new also in non-weighted case.
引用
收藏
相关论文
共 50 条