On the Dynamics of WKB Wave Functions Whose Phase are Weak KAM Solutions of H–J Equation

被引:0
|
作者
Thierry Paul
Lorenzo Zanelli
机构
[1] Ecole Polytechnique (Palaiseau),CNRS and CMLS
[2] University of Padova,Department of Mathematics
关键词
Toroidal pseudodifferential operators; Wigner measures ; Hamilton–Jacobi equation; 58J40; 81S30; 35F21;
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^n := ({\mathbb {R}} / 2\pi {\mathbb {Z}})^n$$\end{document} we begin by proving the closure under composition for the class of Weyl operators Opħw(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Op}^w_\hbar (b)$$\end{document} with symbols b∈Sm(Tn×Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in S^m (\mathbb {T}^n \times \mathbb {R}^n)$$\end{document}. Subsequently, we consider Opħw(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Op}^w_\hbar (H)$$\end{document} when H=12|η|2+V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=\frac{1}{2} |\eta |^2 + V(x)$$\end{document} where V∈C∞(Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \in C^\infty ({\mathbb {T}}^n)$$\end{document} and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schrödinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schrödinger equation to the solution of the Liouville equation on Tn×Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^n \times {\mathbb {R}}^n$$\end{document} written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1} (\mathbb {T}^n; {\mathbb {C}})$$\end{document} with phase functions in the class of Lipschitz continuous weak KAM solutions (positive and negative type) of the Hamilton–Jacobi equation 12|P+∇xv(P,x)|2+V(x)=H¯(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} |P+ \nabla _x v (P,x)|^2 + V(x) = \bar{H}(P)$$\end{document} for P∈ℓZn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \in \ell {\mathbb {Z}}^n$$\end{document} with ℓ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell >0$$\end{document}, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+∇xv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P+ \nabla _x v$$\end{document}.
引用
收藏
页码:1291 / 1327
页数:36
相关论文
共 50 条