Optimal Bounds on the Modulus of Continuity of the Uncentered Hardy–Littlewood Maximal Function

被引:0
|
作者
J. M. Aldaz
L. Colzani
J. Pérez Lázaro
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
[2] Università di Milano-Bicocca,Dipartimento di Matematica
[3] Universidad de La Rioja,Departamento de Matemáticas y Computación
来源
关键词
Modulus of continuity; Uncentered maximal function; Operator norm; 42B25; 26A84;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sharp bounds for the modulus of continuity of the uncentered maximal function in terms of the modulus of continuity of the given function, via integral formulas. Some of the results deduced from these formulas are the following: The best constants for Lipschitz and Hölder functions on proper subintervals of ℝ are Lip α(Mf)≤(1+α)−1Lip α(f), α∈(0,1]. On ℝ, the best bound for Lipschitz functions is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Lip} ( Mf) \le (\sqrt{2} -1)\operatorname{Lip}( f)$\end{document}. In higher dimensions, we determine the asymptotic behavior, as d→∞, of the norm of the maximal operator associated with cross-polytopes, Euclidean balls, and cubes, that is, ℓp balls for p=1,2,∞. We do this for arbitrary moduli of continuity. In the specific case of Lipschitz and Hölder functions, the operator norm of the maximal operator is uniformly bounded by 2−α/q, where q is the conjugate exponent of p=1,2, and as d→∞ the norms approach this bound. When p=∞, best constants are the same as when p=1.
引用
收藏
页码:132 / 167
页数:35
相关论文
共 50 条
  • [1] Optimal Bounds on the Modulus of Continuity of the Uncentered Hardy-Littlewood Maximal Function
    Aldaz, J. M.
    Colzani, L.
    Perez Lazaro, J.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (01) : 132 - 167
  • [2] BV continuity for the uncentered Hardy-Littlewood maximal operator
    Gonzalez-Riquelme, Cristian
    Kosz, Dariusz
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (02)
  • [3] Continuity of Hardy-Littlewood Maximal Function
    Di WU
    Dun-yan YAN
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 982 - 990
  • [4] Continuity of Hardy-Littlewood Maximal Function
    Di Wu
    Dun-yan Yan
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 982 - 990
  • [5] Continuity of Hardy-Littlewood Maximal Function
    Wu, Di
    Yan, Dun-yan
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 982 - 990
  • [6] Regularity and continuity of commutators of the Hardy-Littlewood maximal function
    Liu, Feng
    Xue, Qingying
    Zhang, Pu
    [J]. MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 491 - 509
  • [7] Sobolev boundedness and continuity for commutators of the local Hardy-Littlewood maximal function
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    [J]. ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 203 - 235
  • [8] Remarks on the Hardy-Littlewood maximal function
    Aldaz, JM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 1 - 9
  • [9] Note on Hardy-Littlewood Maximal Function
    Chen Liyuan(Dept.of Economic. Hangzou University
    [J]. Journal of Mathematical Research with Applications, 1995, (01) : 40 - 40
  • [10] The hardy-littlewood maximal function of a sobolev function
    Juha Kinnunen
    [J]. Israel Journal of Mathematics, 1997, 100 : 117 - 124