Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem

被引:32
|
作者
Laumanns M. [1 ]
Thiele M. [1 ]
Zitzler E. [1 ]
机构
[1] Computer Eng./Networks Laboratory, Swiss Fed. Inst. of Technol. Zurich, ETH-Zentrum
关键词
Decision space partition; Evolutionary algorithms; Graph search; Knapsack problem; Multiobjective optimization; Pareto set; running time analysis;
D O I
10.1023/B:NACO.0000023415.22052.55
中图分类号
学科分类号
摘要
In this paper, the expected running time of two multiobjective evolutionary algorithms, SEMO and FEMO, is analyzed for a simple instance of the multiobjective 0/1 knapsack problem. The considered problem instance has two profit values per item and cannot be solved by one-bit mutations. In the analysis, we make use of two general upper bound techniques, the decision space partition method and the graph search method. The paper demonstrates how these methods, which have previously only been applied to algorithms with one-bit mutations, are equally applicable for mutation operators where each bit is flipped independently with a certain probability. © 2004 Kluwer Academic Publishers.
引用
收藏
页码:37 / 51
页数:14
相关论文
共 50 条
  • [1] Evolutionary and heuristic algorithms for multiobjective 0-1 knapsack problem
    Kumar, Rajeev
    Singh, R. K.
    Singhal, A. P.
    Bhartia, Atul
    [J]. APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 331 - +
  • [2] Running time analysis of multiobjective evolutionary algorithms on Pseudo-Boolean functions
    Laumanns, M
    Thiele, L
    Zitzler, E
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) : 170 - 182
  • [3] Analysis of a Multiobjective Evolutionary Algorithm on the 0-1 knapsack problem
    Kumar, Rajeev
    Banerjee, Nilanjan
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 358 (01) : 104 - 120
  • [4] Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance
    Grosan, C
    Oltean, M
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 674 - 677
  • [5] Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance
    Grosan, C
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1958 - 1963
  • [6] Switch Analysis for Running Time Analysis of Evolutionary Algorithms
    Yu, Yang
    Qian, Chao
    Zhou, Zhi-Hua
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (06) : 777 - 792
  • [7] On the effectivity of evolutionary algorithms for the multidimensional knapsack problem
    Gottlieb, J
    [J]. ARTIFICIAL EVOLUTION, 2000, 1829 : 23 - 37
  • [8] Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems
    Shah, Ruchit
    Reed, Patrick
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 211 (03) : 466 - 479
  • [9] Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems
    Ishibuchi, H
    Narukawa, K
    [J]. HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 265 - 270
  • [10] Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems
    [J]. Ishibuchi, H. (hisaoi@cs.osakafu-u.ac.jp), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior; Operador Nacional do Sistema Eletrico - ONS (IEEE Computer Society):