A Maschke type theorem for weak group entwined modules and applications

被引:0
|
作者
Dingguo Wang
Quanguo Chen
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Yili Normal University Yining,School of Mathematics and Statistics
来源
关键词
Natural Transformation; Type Theorem; Galois Extension; Covariant Functor; Left Adjoint;
D O I
暂无
中图分类号
学科分类号
摘要
Let π be a discrete group. Given a weak π-entwining structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A,C)_{\pi - \psi }}$$\end{document} and α ∈ π, we give the necessary and sufficient conditions for the forgetful functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F^{(\alpha )}}$$\end{document} from the category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_A^{\pi - C}(\psi )$$\end{document} of right \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A,C)_{\pi - \psi }}$$\end{document}-modules to the category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{{A_\alpha }}}$$\end{document} of right \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_\alpha }$$\end{document}-modules to be separable. This leads to a generalized notion of integrals. The results are applied to weak Doi-Hopf π-modules and to weak entwining modules.
引用
收藏
页码:329 / 358
页数:29
相关论文
共 50 条
  • [1] A Maschke type theorem for weak group entwined modules and applications
    Wang, Dingguo
    Chen, Quanguo
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 204 (01) : 329 - 358
  • [2] Frobenius properties and Maschke-type theorems for entwined modules
    Brzezinski, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) : 2261 - 2270
  • [3] A Maschke type theorem for Doi-Hopf modules and applications
    Caenepeel, S
    Militaru, G
    Zhu, SL
    JOURNAL OF ALGEBRA, 1997, 187 (02) : 388 - 412
  • [4] A Maschke-type theorem for weak (A, B)-Doi-Hopf modules
    Q. X. Pan
    L. Y. Zhang
    Mathematical Notes, 2011, 89 : 98 - 105
  • [5] A Maschke-Type Theorem for Weak (A,B)-Doi-Hopf Modules
    Pan, Q. X.
    Zhang, L. Y.
    MATHEMATICAL NOTES, 2011, 89 (1-2) : 98 - 105
  • [6] A Maschke Type Theorem for Weak Hopf Algebras
    J.N.ALONSOLVAREZ
    J.M.FERNNDEZVILABOA
    R.GONZLEZRODRíGUEZ
    A.B.RODRíGUEZRAPOSO
    Acta Mathematica Sinica,English Series, 2008, 24 (12) : 2065 - 2080
  • [7] A Maschke Type Theorem for Weak Hopf Algebras
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Rodriguez Raposo, A. B.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) : 2065 - 2080
  • [8] A maschke type theorem for weak Hopf algebras
    J. N. Alonso Álvarez
    J. M. Fernández Vilaboa
    R. González Rodríguez
    A. B. Rodríguez Raposo
    Acta Mathematica Sinica, English Series, 2008, 24 : 2065 - 2080
  • [9] A Maschke Type Theorem forWeak Relative Hopf π-Modules
    Guo S.
    Acta Mathematica Vietnamica, 2015, 40 (4) : 705 - 713
  • [10] A Maschke Type Theorem for Doi-Hopf π-modules
    Chen Quan-guo Tang Jian-gang (Department of Mathematics
    Communications in Mathematical Research, 2012, 28 (04) : 289 - 299