Universality and quantum criticality in quasiperiodic spin chains

被引:0
|
作者
Utkarsh Agrawal
Sarang Gopalakrishnan
Romain Vasseur
机构
[1] University of Massachusetts,Department of Physics
[2] CUNY College of Staten Island,Department of Physics and Astronomy
[3] The Graduate Center,Physics Program and Initiative for the Theoretical Sciences
[4] CUNY,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.
引用
收藏
相关论文
共 50 条
  • [1] Universality and quantum criticality in quasiperiodic spin chains
    Agrawal, Utkarsh
    Gopalakrishnan, Sarang
    Vasseur, Romain
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Quantum criticality of dipolar spin chains
    Isidori, Aldo
    Ruppel, Annika
    Kreisel, Andreas
    Kopietz, Peter
    Mai, Alexander
    Noack, Reinhard M.
    PHYSICAL REVIEW B, 2011, 84 (18):
  • [3] Renormalization approach to quasiperiodic quantum spin chains
    Physica A: Statistical and Theoretical Physics, 1995, 219 (1-2):
  • [4] Quantum Criticality in Open Quantum Spin Chains with Nonreciprocity
    Begg, Samuel E.
    Hanai, Ryo
    PHYSICAL REVIEW LETTERS, 2024, 132 (12)
  • [5] Quantum criticality among entangled spin chains
    Blanc, N.
    Trinh, J.
    Dong, L.
    Bai, X.
    Aczel, A. A.
    Mourigal, M.
    Balents, L.
    Siegrist, T.
    Ramirez, A. P.
    NATURE PHYSICS, 2018, 14 (03) : 273 - +
  • [6] Quantum Criticality of Hot Random Spin Chains
    Vasseur, R.
    Potter, A. C.
    Parameswaran, S. A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (21)
  • [7] Quantum criticality among entangled spin chains
    N. Blanc
    J. Trinh
    L. Dong
    X. Bai
    A. A. Aczel
    M. Mourigal
    L. Balents
    T. Siegrist
    A. P. Ramirez
    Nature Physics, 2018, 14 : 273 - 276
  • [8] Global entanglement and quantum criticality in spin chains
    Wei, TC
    Das, D
    Mukhopadyay, S
    Vishveshwara, S
    Goldbart, PM
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [9] Dual mapping and quantum criticality in quasiperiodic Su-Schrieffer-Heeger chains
    Liu, Tong
    Xia, Xu
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [10] Probing criticality in quantum spin chains with neural networks
    Berezutskii, A.
    Beketov, M.
    Yudin, D.
    Zimboras, Z.
    Biamonte, J. D.
    JOURNAL OF PHYSICS-COMPLEXITY, 2020, 1 (03):