Genetic variation within the macroura species group, which includes Sminthopsis macroura, S. virginiae, S. douglasi, and S. bindi, was examined through analyses of complete mitochondrial 12S rRNA gene sequences, partial control-region DNA sequences, and allozymes. Divergent genetic lineages appear to be present within S. macroura and S. virginiae, and it is likely that this genetic divergence equates to currently unrecognized taxonomic diversity. Specimens of S. macroura (as currently recognized) belong to three genetically distinct lineages that are highly divergent from one another. Two of these lineages may be synonymous with two previously recognized dunnart species - S. froggatti and S. stalkeri. The third appears to represent "true" S. macroura and is itself genetically heterogeneous, with a number of subgroups present within it that may also represent currently unrecognized taxa. The mitochondrial DNA sequence divergences observed between S. virginiae nitela and the two other S. virginiae subspecies are equivalent to, or greater than, those noted between other dunnart species. Allozyme divergences between these subspecies were however slightly lower, and determination on whether S. virginiae nitela should be returned to full species status (S. nitela) may require further evidence. Phylogenetic relationships between species in the macroura group appear to have been partially resolved, with individual 12S rRNA and combined mitochondrial DNA analyses recovering S. bindi as the earliest diverging taxon. Other relationships between species in the group were either not consistently recovered or lacked strong support. © 2001 Plenum Publishing Corporation.