Time-varying additive perturbations of well-posed linear systems

被引:0
|
作者
Jian-Hua Chen
George Weiss
机构
[1] Hunan University of Science and Technology,School of Mathematics and Computational Science
[2] Tel Aviv University,School of Electrical Engineering
关键词
Well-posed linear system; Evolution family; Lax–Phillips semigroup; Scattering passive system; Maxwell’s equations; Moving conductor;
D O I
暂无
中图分类号
学科分类号
摘要
We study a time-varying well-posed system resulting from the additive perturbation of the generator of a time-invariant well-posed system. The associated generator family has the form A+G(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+G(t)$$\end{document}, where G(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(t)$$\end{document} is a bounded operator on the state space and G(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(\cdot )$$\end{document} is strongly continuous. We show that the resulting time-varying system (the perturbed system) is well-posed and investigate its properties. In the particular case when the unperturbed system is scattering passive, we derive an energy balance inequality for the perturbed system. We illustrate this theory using it to formulate the system corresponding to an electrically conducting rigid body moving in vacuo in a bounded domain, with an electromagnetic field (both in the rigid body and in the vacuum) described by Maxwell’s equations.
引用
收藏
页码:149 / 185
页数:36
相关论文
共 50 条