Imaging of nanostructures with sub-100 nm spatial resolution using a desktop EUV microscope

被引:0
|
作者
Przemyslaw W. Wachulak
Andrzej Bartnik
Henryk Fiedorowicz
Dalibor Pánek
Petr Brůža
机构
[1] Military University of Technology,Institute of Optoelectronics
[2] Czech Technical University in Prague,Faculty of Biomedical Engineering
来源
Applied Physics B | 2012年 / 109卷
关键词
Fresnel Zone Plate; Ellipsoidal Mirror; Thin Silicon Membrane; Axis Translation Stage; Condenser Mirror;
D O I
暂无
中图分类号
学科分类号
摘要
Laser-produced plasma sources of short-wavelength radiation offer an interesting alternative to synchrotron and free-electron laser installations. Recently, we reported on a newly developed desktop EUV microscope based on plasma generated from a gas-puff target and diffractive optics. The half-pitch resolution of the microscope approached 50 nm. Compared to analogous microscopes based on synchrotron sources, our system is compact and cost-effective. In this paper, we present the results of imaging experiments on a thin polycrystalline object that was carried out in order to further examine the applicability of the microscope. We have demonstrated here that EUV microscopy can provide structural information that cannot be accessed by conventional optical microscopy or SEM.
引用
收藏
页码:105 / 111
页数:6
相关论文
共 50 条
  • [1] Imaging of nanostructures with sub-100 nm spatial resolution using a desktop EUV microscope
    Wachulak, Przemyslaw W.
    Bartnik, Andrzej
    Fiedorowicz, Henryk
    Panek, Dalibor
    Bruza, Petr
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 109 (01): : 105 - 111
  • [2] Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper
    Cagliani, Alberto
    Wierzbicki, Rafal
    Occhipinti, Luigi
    Petersen, Dirch Hjorth
    Dyvelkov, Karin Nordstrom
    Sukas, Ozlem Sardan
    Herstrom, Berit G.
    Booth, Tim
    Boggild, Peter
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (03)
  • [3] Templated fabrication of sub-100 nm periodic nanostructures
    Sun, Chih-Hung
    Min, Wei-Lun
    Jiang, Peng
    [J]. CHEMICAL COMMUNICATIONS, 2008, (27) : 3163 - 3165
  • [4] Sub-100 nm material processing and imaging with a sub-15 femtosecond laser scanning microscope
    Koenig, Karsten
    Uchugonova, Aisada
    Straub, Martin
    Zhang, Huijing
    Licht, Martin
    Afshar, Maziar
    Feili, Dara
    Seidel, Helmut
    [J]. JOURNAL OF LASER APPLICATIONS, 2012, 24 (04)
  • [5] Sub-100 nm photolithography using TE-polarized waves in transparent nanostructures
    Chang, Wei-Lun
    Tsao, Pei-Hsi
    Wei, Pei-Kuen
    [J]. OPTICS LETTERS, 2007, 32 (01) : 71 - 73
  • [6] Hardmask technology for sub-100 nm lithographic imaging
    Babich, K
    Mahorowala, AP
    Medeiros, DR
    Pfeiffer, D
    Petrillo, K
    Angelopoulos, M
    Grill, A
    Patel, VV
    [J]. ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 152 - 165
  • [7] Facile Nanocasting of Dielectric Metasurfaces with Sub-100 nm Resolution
    Kim, Kwan
    Yoon, Gwanho
    Baek, Seungho
    Rho, Junsuk
    Lee, Heon
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (29) : 26109 - 26115
  • [8] Large area sub-100 nm direct nanoimprinting of palladium nanostructures
    Saifullah, Mohammad S. M.
    Ganesan, Ramakrishnan
    Lim, Su Hui
    Hussain, Hazrat
    Low, Hong Yee
    [J]. RSC ADVANCES, 2016, 6 (26): : 21940 - 21947
  • [9] Injection molding of high aspect ratio sub-100 nm nanostructures
    Matschuk, Maria
    Larsen, Niels B.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (02)
  • [10] A nanofountain probe with sub-100 nm molecular writing resolution
    Kim, KH
    Moldovan, N
    Espinosa, HD
    [J]. SMALL, 2005, 1 (06) : 632 - 635