Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves

被引:0
|
作者
Antonio R. Laliena
Francisco-Javier Sayas
机构
[1] EUPLA,Dep. Matemáticas
[2] Universidad de Zaragoza,Dep. Matemática Aplicada, CPS
[3] Universidad de Zaragoza,School of Mathematics
[4] University of Minnesota,undefined
来源
Numerische Mathematik | 2009年 / 112卷
关键词
65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we address several theoretical questions related to the numerical approximation of the scattering of acoustic waves in two or three dimensions by penetrable non-homogeneous obstacles using convolution quadrature (CQ) techniques for the time variable and coupled boundary element method/finite element method for the space variable. The applicability of CQ to waves requires polynomial type bounds for operators related to the operator Δ − s2 in the right half complex plane. We propose a new systematic way of dealing with this problem, both at the continuous and semidiscrete-in-space cases. We apply the technique to three different situations: scattering by a group of sound-soft and -hard obstacles, by homogeneous and non-homogeneous obstacles.
引用
收藏
页码:637 / 678
页数:41
相关论文
共 50 条
  • [1] Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves
    Laliena, Antonio R.
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (04) : 637 - 678
  • [2] Acoustic Scattering Problems with Convolution Quadrature and the Method of Fundamental Solutions
    Labarca, Ignacio
    Hiptmair, Ralf
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (04) : 985 - 1008
  • [3] DISCRETIZATION OF THE TIME DOMAIN CFIE FOR ACOUSTIC SCATTERING PROBLEMS USING CONVOLUTION QUADRATURE
    Chen, Qiang
    Monk, Peter
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3107 - 3130
  • [4] THEORETICAL STUDIES ON SCATTERING OF ACOUSTIC WAVES FROM A ROUGH SURFACE
    HORTON, CW
    MUIR, TG
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1967, 41 (03): : 627 - &
  • [5] CONVOLUTION OF LINE ACOUSTIC-WAVES
    WILKUS, S
    ADLER, R
    JANES, D
    HUNSINGER, BJ
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1980, 27 (03): : 140 - 140
  • [6] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [7] A convolution quadrature using derivatives and its application
    Hao Ren
    Junjie Ma
    Huilan Liu
    BIT Numerical Mathematics, 2024, 64
  • [8] APPLICATION OF RECIPROCITY THEORY TO SCATTERING OF ACOUSTIC-WAVES BY FLAWS
    KINO, GS
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (06) : 3190 - 3199
  • [9] A Low Frequency Stabilized Convolution Quadrature Approach to Electromagnetic Scattering
    Weile, Daniel S.
    Li, Jielin
    Kastner, Raphael
    2015 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM) PROCEEDINGS, 2015, : 111 - 111
  • [10] Some theoretical aspects of generalised quadrature methods
    Evans, GA
    Chung, KC
    JOURNAL OF COMPLEXITY, 2003, 19 (03) : 272 - 285