In a previous article (Zillinger, Linear inviscid damping for monotone shear flows, 2014), we have established linear inviscid damping for a large class of monotone shear flows in a finite periodic channel and have further shown that boundary effects asymptotically lead to the formation of singularities of derivatives of the solution as t→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${t \rightarrow \infty}$$\end{document}. As the main results of this article, we provide a detailed description of the singularity formation and establish stability in all sub-critical fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore, we discuss the implications of the blow-up to the problem of nonlinear inviscid damping in a finite periodic channel, where high regularity would be essential to control nonlinear effects.
机构:
New York Univ Abu Dhabi, Dept Math, POB 129188,Saadiyat Isl, Abu Dhabi, U Arab EmiratesNew York Univ Abu Dhabi, Dept Math, POB 129188,Saadiyat Isl, Abu Dhabi, U Arab Emirates