Linear Inviscid Damping for Monotone Shear Flows in a Finite Periodic Channel, Boundary Effects, Blow-up and Critical Sobolev Regularity

被引:0
|
作者
Christian Zillinger
机构
[1] Universität Bonn,Mathematisches Institut
来源
Archive for Rational Mechanics and Analysis | 2016年 / 221卷
关键词
Euler Equation; Boundary Effect; Boundary Term; Logarithmic Singularity; Critical Sobolev Exponent;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous article (Zillinger, Linear inviscid damping for monotone shear flows, 2014), we have established linear inviscid damping for a large class of monotone shear flows in a finite periodic channel and have further shown that boundary effects asymptotically lead to the formation of singularities of derivatives of the solution as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t \rightarrow \infty}$$\end{document}. As the main results of this article, we provide a detailed description of the singularity formation and establish stability in all sub-critical fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore, we discuss the implications of the blow-up to the problem of nonlinear inviscid damping in a finite periodic channel, where high regularity would be essential to control nonlinear effects.
引用
收藏
页码:1449 / 1509
页数:60
相关论文
共 14 条