Dynamic fusion for ensemble of deep Q-network

被引:0
|
作者
Patrick P. K. Chan
Meng Xiao
Xinran Qin
Natasha Kees
机构
[1] South China University of Technology,School of Computer Science and Engineering
关键词
Ensemble; Deep reinforcement learning; Dynamic fusion; Deep Q-network;
D O I
暂无
中图分类号
学科分类号
摘要
Ensemble reinforcement learning, which combines the decisions of a set of base agents, is proposed to enhance the decision making process and speed up training time. Many studies indicate that an ensemble model may achieve better results than a single agent because of the complement of base agents, in which the error of an agent may be corrected by others. However, the fusion method is a fundamental issue in ensemble. Currently, existing studies mainly focus on static fusion which either assumes all agents have the same ability or ignores the ones with poor average performance. This assumption causes current static fusion methods to overlook base agents with poor overall performance, but excellent results in select scenarios, which results in the ability of some agents not being fully utilized. This study aims to propose a dynamic fusion method which utilizes each base agent according to its local competence on test states. The performance of a base agent on the validation set is measured in terms of the rewards achieved by the agent in next n steps. The similarity between a validation state and a new state is quantified by Euclidian distance in the latent space and the weights of each base agent are updated according to its performance on validation states and their similarity to a new state. The experimental studies confirm that the proposed dynamic fusion method outperforms its base agents and also the static fusion methods. This is the first dynamic fusion method proposed for deep reinforcement learning, which extends the study on dynamic fusion from classification to reinforcement learning.
引用
收藏
页码:1031 / 1040
页数:9
相关论文
共 50 条
  • [1] Dynamic fusion for ensemble of deep Q-network
    Chan, Patrick P. K.
    Xiao, Meng
    Qin, Xinran
    Kees, Natasha
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (04) : 1031 - 1040
  • [2] Deep Deformable Q-Network: An Extension of Deep Q-Network
    Jin, Beibei
    Yang, Jianing
    Huang, Xiangsheng
    Khan, Dawar
    2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), 2017, : 963 - 966
  • [3] Dynamic Parallel Machine Scheduling With Deep Q-Network
    Liu, Chien-Liang
    Tseng, Chun-Jan
    Huang, Tzu-Hsuan
    Wang, Jhih-Wun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (11): : 6792 - 6804
  • [4] Dynamic constrained evolutionary optimization based on deep Q-network
    Liang, Zhengping
    Yang, Ruitai
    Wang, Jigang
    Liu, Ling
    Ma, Xiaoliang
    Zhu, Zexuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [5] Deep multi-agent fusion Q-Network for graph generation
    Rassil, Asmaa
    Chougrad, Hiba
    Zouaki, Hamid
    KNOWLEDGE-BASED SYSTEMS, 2023, 269
  • [6] Visual Analysis of Deep Q-network
    Seng, Dewen
    Zhang, Jiaming
    Shi, Xiaoying
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (03): : 853 - 873
  • [7] Stochastic Double Deep Q-Network
    Lv, Pingli
    Wang, Xuesong
    Cheng, Yuhu
    Duan, Ziming
    IEEE ACCESS, 2019, 7 : 79446 - 79454
  • [8] Deep Double Q-Network Based on Linear Dynamic Frame Skip
    Chen S.
    Zhang X.-F.
    Zhang Z.-Z.
    Liu Q.
    Wu J.-J.
    Yan Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (11): : 2561 - 2573
  • [9] Dynamic spectrum access based on double deep Q-network and convolution neural network
    Fang, Guangjin
    Shen, Bin
    Zhang, Hong
    Cui, Taiping
    2022 24TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): ARITIFLCIAL INTELLIGENCE TECHNOLOGIES TOWARD CYBERSECURITY, 2022, : 112 - +
  • [10] Deep Q-Network Based Dynamic Movement Strategy in a UAV-Assisted Network
    Zhong, Xukai
    Huo, Yiming
    Dong, Xiaodai
    Liang, Zhonghua
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,