Gauge Theory Solitons on the Noncommutative Cylinder

被引:0
|
作者
S. V. Demidov
S. L. Dubovsky
V. A. Rubakov
S. M. Sibiryakov
机构
[1] Moscow Institute of Physics and Technology,Institute for Nuclear Research
[2] RAS,undefined
来源
关键词
noncommutative field theory; gauge theory; solitons;
D O I
暂无
中图分类号
学科分类号
摘要
The solution-generating technique originally suggested for gauge theories on the noncommutative plane is generalized to the noncommutative cylinder. For this, we construct partial isometry operators and a complete set of orthogonal projection operators in the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}C of the cylinder, and an isomorphism between the free module \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}C and its direct sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}C ⊕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document}C with the Fock module on the cylinder. We explicitly construct the gauge theory soliton and evaluate the spectrum of perturbations about this soliton.
引用
收藏
页码:269 / 283
页数:14
相关论文
共 50 条
  • [1] Gauge theory solitons on the noncommutative cylinder
    Demidov, SV
    Dubovsky, SL
    Rubakov, VA
    Sibiryakov, SM
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (02) : 269 - 283
  • [2] Unstable solitons in noncommutative gauge theory
    Aganagic, M
    Gopakumar, R
    Minwalla, S
    Strominger, A
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (04):
  • [3] Trieste lectures on solitons in noncommutative gauge theories
    Nekrasov, NA
    [J]. SUPERSTRINGS AND RELATED MATTERS, 2001, : 141 - 205
  • [4] Noncommutative induced gauge theory
    A. de Goursac
    J.-C. Wallet
    R. Wulkenhaar
    [J]. The European Physical Journal C, 2007, 51 : 977 - 987
  • [5] Restrictions on gauge groups in noncommutative gauge theory
    Matsubara, K
    [J]. PHYSICS LETTERS B, 2000, 482 (04) : 417 - 419
  • [6] Gauge theory on noncommutative spaces
    Madore, J
    Schraml, S
    Schupp, P
    Wess, J
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (01): : 161 - 167
  • [7] GENERALIZED NONCOMMUTATIVE GAUGE THEORY
    Ardalan, F.
    [J]. PROCEEDINGS OF THE 13TH REGIONAL CONFERENCE ON MATHEMATICAL PHYSICS, 2013, : 185 - 192
  • [8] Gauge theory on noncommutative spaces
    J. Madore
    S. Schraml
    P. Schupp
    J. Wess
    [J]. The European Physical Journal C - Particles and Fields, 2000, 16 : 161 - 167
  • [9] Noncommutative induced gauge theory
    de Goursac, A.
    Wallet, J. -C.
    Wulkenhaar, R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (04): : 977 - 987
  • [10] Duality and noncommutative gauge theory
    Ganor, OJ
    Rajesh, G
    Sethi, S
    [J]. PHYSICAL REVIEW D, 2000, 62 (12) : 1 - 3