Lower a posteriori error estimates on anisotropic meshes

被引:0
|
作者
Natalia Kopteva
机构
[1] University of Limerick,Department of Mathematics and Statistics
来源
Numerische Mathematik | 2020年 / 146卷
关键词
Anisotropic triangulation; Lower a posteriori error estimate; Estimator efficiency; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
Lower a posteriori error bounds obtained using the standard bubble function approach are reviewed in the context of anisotropic meshes. A numerical example is given that clearly demonstrates that the short-edge jump residual terms in such bounds are not sharp. Hence, for linear finite element approximations of the Laplace equation in polygonal domains, a new approach is employed to obtain essentially sharper lower a posteriori error bounds and thus to show that the upper error estimator in the recent paper (Kopteva in Numer Math 137:607–642, 2017) is efficient on partially structured anisotropic meshes.
引用
收藏
页码:159 / 179
页数:20
相关论文
共 50 条