Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries

被引:0
|
作者
Luming Zhu
Hong Yang
Dalai Jin
Hongliang Zhu
机构
[1] Zhejiang Sci-Tech University,Center of Materials Engineering
[2] Zhejiang University,State Key Lab of Silicon Materials
来源
Inorganic Materials | 2007年 / 43卷
关键词
Citric Acid; Anode Material; Hydrothermal Synthesis; Hydrazine Hydrate; Hydrothermal Process;
D O I
暂无
中图分类号
学科分类号
摘要
SnO nanoflakes were successfully prepared by a simple hydrothermal process, with the use of hydrazine hydrate as the mineralizer and polyethylene glycol (PEG) or citric acid as an additive. Hydrazine hydrate serves as both a mineralizer and a protective agent against the oxidation of the SnO products at the hydrothermal stage. X-ray diffraction, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy were employed to characterize the products. FESEM images reveal that the thickness of the SnO nanoflakes prepared by the hydrothermal process with the use of PEG as an additive is around 15 nm. The first reversible specific capacity of the SnO nanoflakes reaches 856 mA h/g, which is near the theoretical value (876 mA h/g). Hydrazine hydrate, the hydrothermal temperature, and the surfactant/complexing agent are three key factors for the hydrothermal synthesis of the SnO nanoflakes by the process presented here.
引用
收藏
页码:1307 / 1312
页数:5
相关论文
共 50 条
  • [1] Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries
    Zhu, Luming
    Yang, Hong
    Jin, Dalai
    Zhu, Hongliang
    INORGANIC MATERIALS, 2007, 43 (12) : 1307 - 1312
  • [2] Hydrothermal Synthesis and Electrochemical Behavior of the SnO2/rGO as Anode Materials for Lithium-Ion Batteries
    Premasudha, Mookala
    Reddy, Bhumi Reddy Srinivasulu
    Kim, Ki-Won
    Subba, Nagireddy Gari
    Ahn, Jou-Hyeon
    Cho, Kwon-Koo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (11) : 7034 - 7038
  • [3] Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries
    Yu, Linghui
    Cai, Dandan
    Wang, Haihui
    Titirici, Maria-Magdalena
    RSC ADVANCES, 2013, 3 (38): : 17281 - 17286
  • [4] Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries
    Chun, Li
    Wu, Xiaozhen
    Lou, Xiaoming
    Zhang, Youxiang
    ELECTROCHIMICA ACTA, 2010, 55 (09) : 3089 - 3092
  • [5] Hydrothermal Synthesis of SnO2 Nanorod as Anode Materials for Lithium-Ion Battery
    Zhang, Wei
    Feng, Lili
    Chen, Haiyun
    Zhang, Yinyin
    NANO, 2019, 14 (09)
  • [6] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Man-Xia Huang
    Yan-Hui Sun
    Dong-Cai Guan
    Jun-Min Nan
    Yue-Peng Cai
    Ionics, 2019, 25 : 5745 - 5757
  • [7] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Huang, Man-Xia
    Sun, Yan-Hui
    Guan, Dong-Cai
    Nan, Jun-Min
    Cai, Yue-Peng
    IONICS, 2019, 25 (12) : 5745 - 5757
  • [8] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [9] Ultrathin SnO nanosheets as anode materials for rechargeable lithium-ion batteries
    Zhang, Haijiao
    He, Qingquan
    Wei, Fengjun
    Tan, Yingjie
    Jiang, Yong
    Zheng, Guanghong
    Ding, Guoji
    Jiao, Zheng
    MATERIALS LETTERS, 2014, 120 : 200 - 203
  • [10] Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries
    Jiao, Zheng
    Chen, Dandan
    Jiang, Yong
    Zhang, Haijiao
    Ling, Xuetao
    Zhuang, Hua
    Su, Ling
    Cao, Hui
    Hou, Ming
    Zhao, Bing
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (05) : 609 - 616