A lattice in more than two Kac-Moody groups is arithmetic

被引:0
|
作者
Pierre-Emmanuel Caprace
Nicolas Monod
机构
[1] UCLouvain,
[2] EPFL,undefined
来源
关键词
Algebraic Group; Weyl Group; Coxeter Group; Open Subgroup; Index Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ < G1 × … × Gn be an irreducible lattice in a product of infinite irreducible complete Kac-Moody groups of simply laced type over finite fields. We show that if n ≥ 3, then each Gi is a simple algebraic group over a local field and Γ is an S-arithmetic lattice. This relies on the following alternative which is satisfied by any irreducible lattice provided n ≥ 2: either Γ is an S-arithmetic (hence linear) group, or Γ is not residually finite. In that case, it is even virtually simple when the ground field is large enough. More general CAT(0) groups are also considered throughout.
引用
收藏
页码:413 / 444
页数:31
相关论文
共 50 条
  • [1] A lattice in more than two Kac-Moody groups is arithmetic
    Caprace, Pierre-Emmanuel
    Monod, Nicolas
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 413 - 444
  • [2] Isomorphisms and rigidity of arithmetic Kac-Moody groups
    Parsa, Amir Farahmand
    Horn, Max
    Koehl, Ralf
    [J]. JOURNAL OF LIE THEORY, 2016, 26 (04) : 1079 - 1105
  • [3] On Rigidity of S-Arithmetic Kac-Moody Groups
    Parsa, Amir Farahmand
    Koehl, Ralf
    [J]. JOURNAL OF LIE THEORY, 2020, 30 (01) : 9 - 23
  • [4] Isomorphisms of Kac-Moody groups
    Pierre-Emmanuel Caprace
    Bernhard Mühlherr
    [J]. Inventiones mathematicae, 2005, 161 : 361 - 388
  • [5] Lattices in Kac-Moody groups
    Carbone, L
    Garland, H
    [J]. MATHEMATICAL RESEARCH LETTERS, 1999, 6 (3-4) : 439 - 447
  • [6] Buildings and Kac-Moody Groups
    Remy, Bertrand
    [J]. BUILDINGS, FINITE GEOMETRIES AND GROUPS, 2012, 10 : 231 - 250
  • [7] On the Topology of Kac-Moody groups
    Kitchloo, Nitu
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 727 - 756
  • [8] Isomorphisms of Kac-Moody groups
    Caprace, PE
    Mühlherr, B
    [J]. INVENTIONES MATHEMATICAE, 2005, 161 (02) : 361 - 388
  • [9] Kac-Moody groups and completions
    Capdeboscq, Inna
    Rumynin, Dmitriy
    [J]. JOURNAL OF ALGEBRA, 2020, 561 : 131 - 148
  • [10] LATTICE VIRASORO FROM LATTICE KAC-MOODY
    BELOV, AA
    CHALTIKIAN, KD
    [J]. PHYSICS LETTERS B, 1993, 317 (1-2) : 73 - 77