2D Finite Element Modelling of Wave Propagation Through Simplified Obstacle

被引:0
|
作者
Bakhai M.P. [1 ]
机构
[1] School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor
关键词
Guided wave; Lamb wave; Non-destructive testing (NDT); Plate with corrosion defect;
D O I
10.1007/s40032-023-00938-9
中图分类号
学科分类号
摘要
The guided wave structural monitoring system is one of the methods for non-destructive testing (NDT) that can be tested on any components without removing it or even stop the operation. Lamb wave is used to detect defects and reflects the echoes on the structure’s surface. As the Lamb wave is still being developed, the use of Lamb wave propagation through thin plate to detect the defects is still not widely used in industry. For unprofessional NDT operator, they might miss out the defects during structural analysis. Therefore, this study is to investigate the characteristics of the wave when the wave interacts with different types of corrosion defect on thin plate such as pitting corrosion (narrow and deep, subsurface, undercutting), erosion corrosion and fatigue corrosion. The main objective of the analysis is to model wave propagation through thin plate with and without corrosion defect by using Abaqus and analyze wave signal by using various types of software. MATLAB was used to produce Gaussian-modulated cosine wave. Next, Abaqus was used to simulate the thin plate with corrosion defect for finite element analysis. After the simulation was done using Abaqus, wave signal analysis needs to be carried out in MATLAB in order to analyze the wave signal output generated by Abaqus. To prove that the simulation is valid and accurate, the theoretical initial and end time arrival of wave was compared with the simulated result. © 2023, The Institution of Engineers (India).
引用
收藏
页码:467 / 477
页数:10
相关论文
共 50 条
  • [1] Modelling of seismic wave propagation in 2d
    [J]. 1600, Editura ASE Bucuresti
  • [2] An explicit 2D finite element time domain scheme for electromagnetic wave propagation
    Nicolas, A
    Nicolas, L
    Vollaire, C
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1538 - 1541
  • [3] Dispersion Analysis of Multiscale Wavelet Finite Element for 2D Elastic Wave Propagation
    Shen, Wei
    Li, Dongsheng
    Ou, Jinping
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (04)
  • [4] Wave propagation through a 2D lattice
    Sreelatha, KS
    Joseph, KB
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 711 - 719
  • [5] 2D finite element modeling for radar wave
    Di, QY
    Wang, MY
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 1999, 42 (06): : 818 - 825
  • [6] A 2D wavelet-based spectral finite element method for elastic wave propagation
    Pahlavan, L.
    Kassapoglou, C.
    Suiker, A. S. J.
    Gurdal, Z.
    [J]. PHILOSOPHICAL MAGAZINE, 2012, 92 (28-30) : 3699 - 3722
  • [7] Modelling the effect of obstacles on the 2D wave propagation with OpenFOAM
    Gadelho, J. F. M.
    Lavrov, A.
    Guedes Soares, C.
    [J]. DEVELOPMENTS IN MARITIME TRANSPORTATION AND EXPLOITATION OF SEA RESOURCES, VOL 2, 2014, : 1057 - 1065
  • [8] Predicting fracture using 2D finite element modelling
    MacNeil, J. A. M.
    Adachih, J. D.
    Goltzman, D.
    Josse, R. G.
    Kovacs, C. S.
    Prior, J. C.
    Olszynski, W.
    Davison, K. S.
    Kaiser, S. M.
    [J]. MEDICAL ENGINEERING & PHYSICS, 2012, 34 (04) : 478 - 484
  • [9] Finite element modelling of lamb waves propagation in 2D plates and thin sheets for damage detection
    Nirbhay, M.
    Dixit, A.
    Misra, R. K.
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (06) : 577 - 588
  • [10] The improvement of crack propagation modelling in triangular 2D structures using the extended finite element method
    Chen, Jun-Wei
    Zhou, Xiao-Ping
    Berto, Filippo
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (02) : 397 - 414