A joint learning approach for genomic prediction in polyploid grasses

被引:0
|
作者
Alexandre Hild Aono
Rebecca Caroline Ulbricht Ferreira
Aline da Costa Lima Moraes
Letícia Aparecida de Castro Lara
Ricardo José Gonzaga Pimenta
Estela Araujo Costa
Luciana Rossini Pinto
Marcos Guimarães de Andrade Landell
Mateus Figueiredo Santos
Liana Jank
Sanzio Carvalho Lima Barrios
Cacilda Borges do Valle
Lucimara Chiari
Antonio Augusto Franco Garcia
Reginaldo Massanobu Kuroshu
Ana Carolina Lorena
Gregor Gorjanc
Anete Pereira de Souza
机构
[1] University of Campinas (UNICAMP),Molecular Biology and Genetic Engineering Center (CBMEG)
[2] The University of Edinburgh,The Roslin Institute and Royal (Dick) School of Veterinary Studies
[3] University of São Paulo (USP),Genetics Department, Luiz de Queiroz College of Agriculture (ESALQ)
[4] Universidade Federal de São Paulo (UNIFESP),Instituto de Ciência e Tecnologia (ICT)
[5] Agronomic Institute of Campinas (IAC),Advanced Center of Sugarcane Agrobusiness Technological Research
[6] Brazilian Agricultural Research Corporation,Embrapa Beef Cattle
[7] Aeronautics Institute of Technology,Department of Plant Biology, Institute of Biology (IB)
[8] University of Campinas (UNICAMP),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in different cross-validation scenarios. By combining classification and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.
引用
收藏
相关论文
共 50 条
  • [1] A joint learning approach for genomic prediction in polyploid grasses
    Aono, Alexandre Hild
    Ulbricht Ferreira, Rebecca Caroline
    Lima Moraes, Aline da Costa
    de Castro Lara, Leticia Aparecida
    Gonzaga Pimenta, Ricardo Jose
    Costa, Estela Araujo
    Pinto, Luciana Rossini
    de Andrade Landell, Marcos Guimaraes
    Santos, Mateus Figueiredo
    Jank, Liana
    Lima Barrios, Sanzio Carvalho
    do Valle, Cacilda Borges
    Chiari, Lucimara
    Franco Garcia, Antonio Augusto
    Kuroshu, Reginaldo Massanobu
    Lorena, Ana Carolina
    Gorjanc, Gregor
    de Souza, Anete Pereira
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Exploring Deep Learning for Complex Trait Genomic Prediction in Polyploid Outcrossing Species
    Zingaretti, Laura M.
    Gezan, Salvador Alejandro
    Ferrao, Luis Felipe, V
    Osorio, Luis F.
    Monfort, Amparo
    Munoz, Patricio R.
    Whitaker, Vance M.
    Perez-Enciso, Miguel
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [3] Chromosome Pairing in Polyploid Grasses
    Svacina, Radim
    Sourdille, Pierre
    Kopecky, David
    Bartos, Jan
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [4] Genomic prediction with allele dosage information in highly polyploid species
    Batista, Lorena G.
    Mello, Victor H.
    Souza, Anete P.
    Margarido, Gabriel R. A.
    THEORETICAL AND APPLIED GENETICS, 2022, 135 (02) : 723 - 739
  • [5] Genomic prediction with allele dosage information in highly polyploid species
    Lorena G. Batista
    Victor H. Mello
    Anete P. Souza
    Gabriel R. A. Margarido
    Theoretical and Applied Genetics, 2022, 135 : 723 - 739
  • [6] The genomic approach to growth prediction
    Clayton, P. E.
    Whatmore, A. J.
    HORMONE RESEARCH, 2007, 67 : 10 - 15
  • [7] A deep learning approach to prediction of blood group antigens from genomic data
    Moslemi, Camous
    Saekmose, Susanne
    Larsen, Rune
    Brodersen, Thorsten
    Bay, Jakob T.
    Didriksen, Maria
    Nielsen, Kaspar R.
    Bruun, Mie T.
    Dowsett, Joseph
    Dinh, Khoa M.
    Mikkelsen, Christina
    Hyvarinen, Kati
    Ritari, Jarmo
    Partanen, Jukka
    Ullum, Henrik
    Erikstrup, Christian
    Ostrowski, Sisse R.
    Olsson, Martin L.
    Pedersen, Ole B.
    TRANSFUSION, 2024, 64 (11) : 2179 - 2195
  • [8] Integrating imaging and genomic data for the discovery of distinct glioblastoma subtypes: a joint learning approach
    Jun Guo
    Anahita Fathi Kazerooni
    Erik Toorens
    Hamed Akbari
    Fanyang Yu
    Chiharu Sako
    Elizabeth Mamourian
    Russell T. Shinohara
    Constantinos Koumenis
    Stephen J. Bagley
    Jennifer J. D. Morrissette
    Zev A. Binder
    Steven Brem
    Suyash Mohan
    Robert A. Lustig
    Donald M. O’Rourke
    Tapan Ganguly
    Spyridon Bakas
    MacLean P. Nasrallah
    Christos Davatzikos
    Scientific Reports, 14
  • [9] Integrating imaging and genomic data for the discovery of distinct glioblastoma subtypes: a joint learning approach
    Guo, Jun
    Fathi Kazerooni, Anahita
    Toorens, Erik
    Akbari, Hamed
    Yu, Fanyang
    Sako, Chiharu
    Mamourian, Elizabeth
    Shinohara, Russell T.
    Koumenis, Constantinos
    Bagley, Stephen J.
    Morrissette, Jennifer J. D.
    Binder, Zev A.
    Brem, Steven
    Mohan, Suyash
    Lustig, Robert A.
    O'Rourke, Donald M.
    Ganguly, Tapan
    Bakas, Spyridon
    Nasrallah, MacLean P.
    Davatzikos, Christos
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] DROUGHT SURVIVAL AND DEEP ROOTING OF POLYPLOID ST AUGUSTINE GRASSES
    BUSEY, P
    HORTSCIENCE, 1987, 22 (05) : 1075 - 1075