Bifurcations of a Generalized Heteroclinic Loop in a Planar Piecewise Smooth System with Periodic Perturbations

被引:0
|
作者
Fang Wu
Lihong Huang
Jiafu Wang
机构
[1] Hunan University,School of Mathematics
[2] Changsha University,College of Mathematics and Computer Science
[3] Changsha University of Science and Technology,School of Mathematics and Statistics
关键词
Piecewise smooth system; T-periodic perturbation; Generalized heteroclinic loop; Sliding periodic orbit; Bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This work deals with the periodic orbit bifurcations of a T-periodic perturbed piecewise smooth system whose unperturbed part has a generalized heteroclinic loop connecting a hyperbolic critical point and a quadratic tangential singularity. By constructing several displacement functions that depend on perturbation parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and time t, sufficient conditions of the existence of a homoclinic loop and a sliding generalized heteroclinic loop (that is a generalized heteroclinic loop a part of which lies on the switching manifold) are obtained. As the application, we give a concrete example to show that under suitable perturbations of the generalized heteroclinic loop the corresponding phenomena can appear.
引用
收藏
相关论文
共 50 条