Optimal time to invest when the price processes are geometric Brownian motions

被引:19
|
作者
Yaozhong Hu
Bernt Øksendal
机构
[1] Department of Mathematics,
[2] University of Kansas,undefined
[3] 405 Snow Hall,undefined
[4] Lawrence,undefined
[5] KS 66045,undefined
[6] USA (e-mail: hu@math.ukans.edu) ,undefined
[7] Department of Mathematics,undefined
[8] University of Oslo,undefined
[9] P.O. Box 1053 Blindern,undefined
[10] N-0316 Oslo,undefined
[11] Norway and Institute of Finance and Management Science,undefined
[12] Norwegian School of Economics and Business Administration,undefined
[13] Helleveien 30,undefined
[14] N-5035 Bergen-Sandviken,undefined
[15] Norway (e-mail: oksendal@math.uio.no) ,undefined
关键词
Key words: Geometric Brownian motion, optimal stopping time, continuation region, stopping set JEL classification: D81 Mathematics Subject Classifications (1991): 60G40, 93E20, 60H10, 90A09;
D O I
10.1007/s007800050042
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X_1(t)$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cdots$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X_n(t)$\end{document} be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document} geometric Brownian motions, possibly correlated. We study the optimal stopping problem: Find a stopping time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau^*<\infty$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \sup_{\tau}{\Bbb E}^x\Big\{ X_1(\tau)-X_2(\tau)-\cdots -X_n(\tau)\Big\}={\Bbb E}^x \Big\{ X_1(\tau^*)-X_2(\tau^*)-\cdots -X_n(\tau^*)\Big\} , \] \end{document} the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\sup$\end{document} being taken all over all finite stopping times \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb E}^x$\end{document} denotes the expectation when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(X_1(0), \cdots, X_n(0))=x=(x_1,\cdots, x_n)$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=2$\end{document} this problem was solved by McDonald and Siegel, but they did not state the precise conditions for their result. We give a new proof of their solution for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=2$\end{document} using variational inequalities and we solve the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document}-dimensional case when the parameters satisfy certain (additional) conditions.
引用
收藏
页码:295 / 310
页数:15
相关论文
共 50 条
  • [1] Time optimal portfolio selection: Mean-variance-efficient sets for arithmetic and geometric Brownian price processes
    Burkhardt, T
    [J]. CLASSIFICATION AND INFORMATION PROCESSING AT THE TURN OF THE MILLENNIUM, 2000, : 304 - 311
  • [2] An optimal inventory policy when purchase price follows geometric Brownian motion process
    Suresha Kharvi
    T. P. M. Pakkala
    [J]. OPSEARCH, 2021, 58 : 835 - 851
  • [3] An optimal inventory policy when purchase price follows geometric Brownian motion process
    Kharvi, Suresha
    Pakkala, T. P. M.
    [J]. OPSEARCH, 2021, 58 (04) : 835 - 851
  • [4] An Optimal Strategy for Pairs Trading Under Geometric Brownian Motions
    Jingzhi Tie
    Hanqin Zhang
    Qing Zhang
    [J]. Journal of Optimization Theory and Applications, 2018, 179 : 654 - 675
  • [5] An Optimal Strategy for Pairs Trading Under Geometric Brownian Motions
    Tie, Jingzhi
    Zhang, Hanqin
    Zhang, Qing
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (02) : 654 - 675
  • [6] ON BOUNCING GEOMETRIC BROWNIAN MOTIONS
    Liu, Xin
    Kulkarni, Vidyadhar G.
    Gong, Qi
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 591 - 617
  • [7] Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions
    Gapeev, Pavel, V
    Kort, Peter M.
    Lavrutich, Maria N.
    Thijssen, Jacco J. J.
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (02) : 789 - 813
  • [8] Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions
    Pavel V. Gapeev
    Peter M. Kort
    Maria N. Lavrutich
    Jacco J. J. Thijssen
    [J]. Methodology and Computing in Applied Probability, 2022, 24 : 789 - 813
  • [9] Pairs-trading under geometric Brownian motions: An optimal strategy with cutting losses
    Liu, Ruyi
    Wu, Zhen
    Zhang, Qing
    [J]. AUTOMATICA, 2020, 115
  • [10] Donsker-type theorems for correlated geometric fractional Brownian motions and related processes
    Parczewski, Peter
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22