Profinite groups with an automorphism of prime order whose fixed points have finite Engel sinks

被引:0
|
作者
E. I. Khukhro
P. Shumyatsky
机构
[1] University of Lincoln,Charlotte Scott Research Centre for Algebra
[2] University of Brasilia,Department of Mathematics
来源
关键词
Profinite groups; Engel condition; Locally nilpotent; Automorphism; Primary 20E18; 20E36; Secondary 20F19; 20F45;
D O I
暂无
中图分类号
学科分类号
摘要
A right Engel sink of an element g of a group G is a set R(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {R}}}(g)$$\end{document} such that for every x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G$$\end{document} all sufficiently long commutators [...[[g,x],x],⋯,x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[...[[g,x],x],\dots ,x]$$\end{document} belong to R(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}(g)$$\end{document}. (Thus, g is a right Engel element precisely when we can choose R(g)={1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {R}}}(g)=\{ 1\}$$\end{document}.) We prove that if a profinite group G admits a coprime automorphism φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of prime order such that every fixed point of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has a finite right Engel sink, then G has an open locally nilpotent subgroup. A left Engel sink of an element g of a group G is a set E(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {E}}}(g)$$\end{document} such that for every x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G$$\end{document} all sufficiently long commutators [...[[x,g],g],⋯,g]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[...[[x,g],g],\dots ,g]$$\end{document} belong to E(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {E}}}(g)$$\end{document}. (Thus, g is a left Engel element precisely when we can choose E(g)={1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {E}}(g)=\{ 1\}$$\end{document}.) We prove that if a profinite group G admits a coprime automorphism φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of prime order such that every fixed point of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has a finite left Engel sink, then G has an open pronilpotent-by-nilpotent subgroup.
引用
收藏
页码:111 / 123
页数:12
相关论文
共 50 条
  • [1] Profinite groups with an automorphism of prime order whose fixed points have finite Engel sinks
    Khukhro, E. I.
    Shumyatsky, P.
    MONATSHEFTE FUR MATHEMATIK, 2022, 197 (01): : 111 - 123
  • [2] On Finite Groups with an Automorphism of Prime Order Whose Fixed Points Have Bounded Engel Sinks
    E. I. Khukhro
    P. Shumyatsky
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 33 - 47
  • [3] On Finite Groups with an Automorphism of Prime Order Whose Fixed Points Have Bounded Engel Sinks
    Khukhro, E., I
    Shumyatsky, P.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 33 - 47
  • [4] On profinite groups with automorphisms whose fixed points have countable Engel sinks
    Evgeny I. Khukhro
    Pavel Shumyatsky
    Israel Journal of Mathematics, 2022, 247 : 303 - 330
  • [5] ON PROFINITE GROUPS WITH AUTOMORPHISMS WHOSE FIXED POINTS HAVE COUNTABLE ENGEL SINKS
    Khukhro, Evgeny I.
    Shumyatsky, Pavel
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (01) : 303 - 330
  • [6] PROFINITE GROUPS WITH AN AUTOMORPHISM WHOSE FIXED POINTS ARE RIGHT ENGEL
    Acciarri, C.
    Khukhro, E., I
    Shumyatsky, P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) : 3691 - 3703
  • [7] Finite Groups with a Soluble Group of Coprime Automorphisms Whose Fixed Points Have Bounded Engel Sinks
    E. I. Khukhro
    P. Shumyatsky
    Algebra and Logic, 2023, 62 (1) : 80 - 93
  • [8] Finite Groups with a Soluble Group of Coprime Automorphisms Whose Fixed Points Have Bounded Engel Sinks
    Khukhro, E. I.
    Shumyatsky, P.
    ALGEBRA AND LOGIC, 2023, 62 (01) : 80 - 93
  • [9] Engel sinks of fixed points in finite groups
    Acciarri, Cristina
    Shumyatsky, Pavel
    Silveira, Danilo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4592 - 4601
  • [10] On finite groups with automorphisms whose fixed points are Engel
    Shumyatsky, Pavel
    da Silveira, Danilo Sancao
    ARCHIV DER MATHEMATIK, 2016, 106 (03) : 209 - 218