Global Stabilization of Two Dimensional Viscous Burgers’ Equation by Nonlinear Neumann Boundary Feedback Control and Its Finite Element Analysis

被引:0
|
作者
Sudeep Kundu
Amiya Kumar Pani
机构
[1] University of Graz,Institute of Mathematics and Scientific Computing
[2] IIT Bombay,Department of Mathematics
来源
关键词
2D-viscous Burgers’ equation; Boundary feedback control; Constant steady state; Stabilization; Finite element method; Error estimate; Numerical experiments; 35B37; 65M60; 65M15; 93B52; 93D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, global stabilization results for the two dimensional viscous Burgers’ equation, that is, convergence of unsteady solution to its constant steady state solution with any initial data, are established using a nonlinear Neumann boundary feedback control law. Then, applying C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}-conforming finite element method in spatial direction, optimal error estimates in L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}-norms for the state variable and convergence result for the boundary feedback control law are derived. All the results preserve exponential stabilization property. Finally, several numerical experiments are conducted to confirm our theoretical findings.
引用
收藏
相关论文
共 50 条