Declarative platform for high-performance network traffic analytics

被引:0
|
作者
Harjot Gill
Dong Lin
Cam Nguyen
Tanveer Gill
Boon Thau Loo
机构
[1] University of Pennsylvania,Computer and Information Science Department
来源
Cluster Computing | 2014年 / 17卷
关键词
Declarative programming; Multi-core processing; Network analytics; Application-layer traffic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents Scalanytics, a declarative platform that supports high-performance application layer analysis of network traffic. Scalanytics uses (1) stateful network packet processing techniques for extracting application layer data from network packets, (2) a declarative rule-based language called Analog for compactly specifying analysis pipelines from reusable modules, and (3) a task-stealing architecture for processing network packets at high throughput within these pipelines, by leveraging multi-core processing capabilities in a load-balanced manner without the need for explicit performance profiling. In a cluster of machines, Scalanytics further improves throughput through the use of a consistent-hashing based load partitioning strategy. Our evaluation on a 16-core machine demonstrate that Scalanytics achieves up to 11.4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} improvement in throughput compared with the best uniprocessor implementation. Moreover, Scalanytics outperforms the Bro intrusion detection system by an order of magnitude when used for analyzing SMTP traffic. We further observed increased throughput when running Scalanytics pipelines across multiple machines.
引用
收藏
页码:1121 / 1137
页数:16
相关论文
共 50 条
  • [1] Declarative platform for high-performance network traffic analytics
    Gill, Harjot
    Lin, Dong
    Cam Nguyen
    Gill, Tanveer
    Loo, Boon Thau
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2014, 17 (04): : 1121 - 1137
  • [2] A HIGH-PERFORMANCE TRANSPORT NETWORK PLATFORM
    LEBIZAY, G
    GALAND, C
    CHEVALIER, D
    BARRE, F
    [J]. IBM SYSTEMS JOURNAL, 1995, 34 (04) : 705 - 724
  • [3] High-performance transport network platform
    [J]. IBM Syst J, 4 (705-724):
  • [4] NTCA: A High-Performance Network Traffic Classification Architecture
    Sun, Guanglu
    Dong, Hui
    Li, Dandan
    Xiao, Feng
    [J]. INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2013, 6 (05): : 11 - 20
  • [5] The Akamai network: A platform for high-performance Internet applications
    Nygren E.
    Sitaraman R.K.
    Sun J.
    [J]. Operating Systems Review (ACM), 2010, 44 (03): : 2 - 19
  • [6] A high-performance network monitoring platform for intrusion detection
    Wu, Y
    Yun, XC
    [J]. INFORMATION NETWORKING: CONVERGENCE IN BROADBAND AND MOBILE NETWORKING, 2005, 3391 : 52 - 61
  • [7] Rogas: A Declarative Framework for Network Analytics
    Liu, Minjian
    Wang, Qing
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 9 (13): : 1561 - 1564
  • [8] Blockmon: A High-Performance Composable Network Traffic Measurement System
    Huici, Felipe
    di Pietro, Andrea
    Trammell, Brian
    Hidalgo, Jose Maria
    Ruiz, Daniel Martinez
    d'Heureuse, Nico
    [J]. ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2012, 42 (04) : 79 - 80
  • [9] ENTRADA: a High-Performance Network Traffic Data Streaming Warehouse
    Wullink, Maarten
    Moura, Giovane C. M.
    Muller, Moritz
    Hesselman, Cristian
    [J]. NOMS 2016 - 2016 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2016, : 913 - 918
  • [10] Face.evoLVe: A cross-platform library for high-performance face analytics
    Wang, Qingzhong
    Zhang, Pengfei
    Xiong, Haoyi
    Zhao, Jian
    [J]. NEUROCOMPUTING, 2022, 494 : 443 - 445