Quality factor measurement for MEMS resonator using time-domain amplitude decaying method

被引:0
|
作者
Yuzhao Wang
Yong Xie
Tianlei Zhang
Guoqiang Wu
Gang Wang
Caijia Yu
机构
[1] Aviation Industry Corporation of China,Department of Navigation, Flight Automatic Control Research Institute
来源
Microsystem Technologies | 2015年 / 21卷
关键词
Decay Amplitude; Sweeping Method; Vacuum Packaging; Decay Vibration; Natural Resonant Frequency;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a time-domain amplitude decaying (TDAD) method measuring the quality factor (Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}) of micro-electro-mechanical system (MEMS) resonators is presented. The decaying amplitudes of the resonators are measured using a lock-in amplifier (LIA) and fitted exponentially to extract the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. To suppress the capacitive feedthrough signal, the internal reference of the LIA is used to excite the resonators and the decaying amplitudes are detected with the first harmonic mode (2f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}). Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}s of wafer level packaged MEMS resonators are measured using both the proposed TDAD method and the commonly used sweeping method. The relative error of the measured Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}s using the two methods is <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}5.5 %. The TDAD method shows a better repeatability of 0.49 % compared to that of the sweeping method of 10.4 %. The consistency of the measurement under different ac exciting voltages is also evaluated.
引用
收藏
页码:825 / 829
页数:4
相关论文
共 50 条
  • [1] Quality factor measurement for MEMS resonator using time-domain amplitude decaying method
    Wang, Yuzhao
    Xie, Yong
    Zhang, Tianlei
    Wu, Guoqiang
    Wang, Gang
    Yu, Caijia
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2015, 21 (04): : 825 - 829
  • [2] A time-domain Discontinuous Galerkin method for mechanical resonator quality factor computations
    Govindjee, Sanjay
    Persson, Per-Olof
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (19) : 6380 - 6392
  • [3] CMOS 0.35μm Implementation of Time-Domain Measurement of Resonator's Quality Factor
    Ren, Xiaojiao
    Zhang, Ming
    Llaser, Nicolas
    [J]. 2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 826 - 829
  • [4] Accuracy Analysis of Quality Factor Measurement Based on Time Domain Method for MEMS Resonators
    Wang Lingyun
    Du Xiaohui
    Su Yuanzhe
    He Jie
    Li Yipan
    Wu Dezhi
    Sun Daoheng
    [J]. MICRO-NANO TECHNOLOGY XV, 2014, 609-610 : 1131 - 1137
  • [5] Measurement of reverberation chamber quality factor by time-domain technology
    Wang, GD
    Sha, F
    Meng, DL
    Chen, S
    [J]. ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 1, 2005, : 412 - 415
  • [6] High-Precision Time-Domain Measurement of Quality Factor
    Zhang, Ming
    Llaser, Nicolas
    Rodes, Francis
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (03) : 842 - 844
  • [7] Required Bandwidth for Time-Domain Measurement of the Quality Factor of Reverberation Chambers
    Nourshamsi, Neda
    West, James C.
    Bunting, Charles F.
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY (EMCSI), 2017, : 481 - 485
  • [8] Research on the Time-Domain Measurement Method of Low-Frequency Splitting for Hemispherical Resonator
    Li, Shaoliang
    Yang, Hao
    Zhao, Wanliang
    Qu, Rui
    Duan, Jie
    Rong, Yijie
    Jin, Xin
    Li, Chaojiang
    [J]. JOURNAL OF SENSORS, 2021, 2021
  • [9] AN EFFICIENT TIME-DOMAIN FULL WAVEFORM INVERSION USING THE EXCITATION AMPLITUDE METHOD
    Kim, Ahreum
    Ryu, Donghyun
    Ha, Wansoo
    [J]. JOURNAL OF SEISMIC EXPLORATION, 2017, 26 (05): : 481 - 498
  • [10] Time-domain method of measurement of antenna parameters
    Skulkin S.P.
    Turchin V.I.
    [J]. Radiophysics and Quantum Electronics, 1998, 41 (5) : 410 - 416