Regge trajectory relations for the universal description of the heavy-light systems: diquarks, mesons, baryons and tetraquarks

被引:6
|
作者
Chen, Jiao-Kai [1 ]
机构
[1] Shanxi Normal Univ, Sch Phys & Informat Engn, Taiyuan 030031, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 04期
关键词
SUM-RULES; PRINCIPLE; HOLOGRAPHY; SPECTRUM; STATES;
D O I
10.1140/epjc/s10052-024-12706-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Two newly proposed Regge trajectory relations are employed to analyze the heavy-light systems. One of the relations is M = m 1 + m 2 + C ' + beta x x + c 0 x \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=m_1+m_2+C'+\beta _x\sqrt{x+c_{0x}}$$\end{document} , ( x = l , n r ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x=l,\,n_r)$$\end{document} . Another reads M = m 1 + C ' + beta x 2 ( x + c 0 x ) + 4 3 pi beta x m 2 3 / 2 ( x + c 0 x ) 1 / 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=m_1+C'+\sqrt{\beta _x<^>2(x+c_{0x})+\frac{4}{3}\sqrt{{\pi }{\beta _x}}m<^>{3/2}_2(x+c_{0x})<^>{1/4}}$$\end{document} . M is the bound state mass. m 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document} and m 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document} are the masses of the heavy constituent and the light constituent, respectively. l is the orbital angular momentum and n r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_r$$\end{document} is the radial quantum number. beta x \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _x$$\end{document} and c 0 x \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{0x}$$\end{document} are fitted. m 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document} , m 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document} and C ' \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} are input parameters. These two formulas consider both of the masses of heavy constituent and light constituent. We find that the heavy-light diquarks, the heavy-light mesons, the heavy-light baryons and the heavy-light tetraquarks satisfy these two formulas. When applying the first formula, the heavy-light systems satisfy the universal description irrespective of both of the masses of the light constituents and the heavy constituent. When using the second relation, the heavy-light systems satisfy the universal description irrespective of the mass of the heavy constituent. The fitted slopes differ distinctively for the heavy-light mesons, baryons and tetraquarks, respectively. When employing the first relation, the average values of c f n r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{fn_r}$$\end{document} ( c fl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{fl}$$\end{document} ) are 1.026, 0.794 and 0.553 (1.026, 0.749 and 0.579) for the heavy-light mesons, the heavy-light baryons and the heavy-light tetraquarks, respectively. Upon application of the second relation, the mean values of c f n r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{fn_r}$$\end{document} ( c fl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{fl}$$\end{document} ) are 1.108, 0.896 and 0.647 (1.114, 0.855 and 0.676) for the heavy-light mesons, the heavy-light baryons and the heavy-light tetraquarks, respectively. Moreover, the fitted results show that the Regge trajectories for the heavy-light systems are concave downwards in the ( M 2 , n r ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M<^>2,\,n_r)$$\end{document} and ( M 2 , l ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M<^>2,\,l)$$\end{document} planes.
引用
收藏
页数:11
相关论文
共 17 条
  • [1] Regge trajectory relation for the universal description of the heavy-heavy systems: Diquarks, mesons, baryons and tetraquarks
    Chen, Jiao-Kai
    NUCLEAR PHYSICS A, 2024, 1050
  • [2] Regge trajectories for the heavy-light diquarks
    Jiao-Kai Chen
    Xia Feng
    Jia-Qi Xie
    Journal of High Energy Physics, 2023
  • [3] Regge trajectories for the heavy-light diquarks
    Chen, Jiao-Kai
    Feng, Xia
    Xie, Jia-Qi
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
  • [4] Regge-like relation and a universal description of heavy-light systems
    Chen, Kan
    Dong, Yubing
    Liu, Xiang
    Lu, Qi-Fang
    Matsuki, Takayuki
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01):
  • [5] Masses of heavy-light mesons in Regge phenomenology
    Qin Zhen
    Dong Xin-Ping
    Wei Ke-Wei
    CHINESE PHYSICS C, 2013, 37 (05)
  • [6] Masses of heavy-light mesons in Regge phenomenology
    秦臻
    董新平
    魏科伟
    Chinese Physics C, 2013, 37 (05) : 15 - 19
  • [7] Masses of heavy-light mesons in Regge phenomenology
    秦臻
    董新平
    魏科伟
    Chinese Physics C, 2013, (05) : 15 - 19
  • [8] Universal behavior in excited heavy-light and light-light mesons
    Physical Review D Particles, Fields, Gravitation and Cosmology, 55 (09):
  • [9] Universal behavior in excited heavy-light and light-light mesons
    Olsson, MG
    PHYSICAL REVIEW D, 1997, 55 (09): : 5479 - 5482
  • [10] Regge-like relation and a universal description of heavy–light systems
    Kan Chen
    Yubing Dong
    Xiang Liu
    Qi-Fang Lü
    Takayuki Matsuki
    The European Physical Journal C, 2018, 78