An intuitive way for constructing parametric quadric triangles

被引:0
|
作者
Gudrun Albrecht
Marco Paluszny
Marianela Lentini
机构
[1] Univ Lille Nord de France,Escuela de Matemáticas
[2] UVHC,undefined
[3] LAMAV,undefined
[4] FR CNRS 2956,undefined
[5] Universidad Nacional de Colombia,undefined
[6] Sede Medellín,undefined
来源
关键词
Quadric; Rational triangular Bézier patch; Intuitive algorithm; Primary 65D17; Secondary 51N15; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
We present an intuitive algorithm for providing quadric surface design elements with shape parameters. To this end, we construct rational parametric triangular quadratic patches which lie on quadrics. The input of the algorithm is three vertex data points in 3D and normals at these points. It emanates from a thorough analysis of two existing methods for the construction of rational parametric Bézier triangles on quadrics, that allows to establish an interesting geometric relation between them. The sufficient condition for a configuration of vertex and normal data to allow for the existence of a rational triangular quadratic patch lying on a quadric whose tangent planes at the vertices are those prescribed by the given normals is the concurrence of certain cevians. When these conditions are not met we offer an optimization procedure to tweak the normals, without varying the vertex data, so that for the new normals there is a rational triangular quadratic patch that lies on a quadric. The resulting quadric design element offers three free shape parameters.
引用
下载
收藏
页码:595 / 617
页数:22
相关论文
共 50 条
  • [1] An intuitive way for constructing parametric quadric triangles
    Albrecht, Gudrun
    Paluszny, Marco
    Lentini, Marianela
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (02): : 595 - 617
  • [2] Intuitive nonexamples: The case of triangles
    Tsamir P.
    Tirosh D.
    Levenson E.
    Educational Studies in Mathematics, 2008, 69 (2) : 81 - 95
  • [3] Transfinite interpolation of triangles using quadric patches
    Baart, ML
    Coetzee, MA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (09) : 75 - 85
  • [4] PARAMETRIC REPRESENTATION OF QUADRIC SURFACES
    BOEHM, W
    HANSFORD, D
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (01): : 191 - 200
  • [5] Transfinite interpolation of conic triangles using quadric patches
    P.U. for C.H.E., Vanderbijlpark, South Africa
    Computers and Mathematics with Applications, 1997, 34 (09): : 75 - 85
  • [6] An Algorithm for Parametric Quadric Patch Construction
    G. Albrecht
    Computing, 2004, 72 : 1 - 12
  • [7] An algorithm for parametric quadric patch construction
    Albrecht, G
    COMPUTING, 2004, 72 (1-2) : 1 - 12
  • [8] Constructing triangles for social management of habitat
    de Manuel Jerez, Esteban
    HABITAT Y SOCIEDAD, 2010, (01): : 13 - 37
  • [9] Implicit Equations of Non-degenerate Rational Bezier Quadric Triangles
    Canton, Alicia
    Fernandez-Jambrina, L.
    Rosado Maria, E.
    Vazquez-Gallo, M. J.
    CURVES AND SURFACES, 2015, 9213 : 70 - 79
  • [10] GEOMETRIC INVARIANTS OF PARAMETRIC TRIANGULAR QUADRIC PATCHES
    Albrecht, Gudrun
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (02): : 63 - 84