A posteriori error estimation for finite element discretization of parameter identification problems

被引:0
|
作者
Roland Becker
Boris Vexler
机构
[1] Universität Heidelberg,Institut für Angewandte Mathematik
来源
Numerische Mathematik | 2004年 / 96卷
关键词
Partial Differential Equation; Optimization Algorithm; Unknown Parameter; Weak Form; Element Discretization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop an a posteriori error estimator for parameter identification problems. The state equation is given by a partial differential equation involving a finite number of unknown parameters. The presented error estimator aims to control the error in the parameters due to discretization by finite elements. For this, we consider the general setting of a partial differential equation written in weak form with abstract parameter dependence. Exploiting the special structure of the parameter identification problem, allows us to derive an error estimator which is cheap in comparison to the overall optimization algorithm. Several examples illustrating the behavior of an adaptive mesh refinement algorithm based on our error estimator are discussed in the numerical section. For the problems considered here, both, the efficiency of the estimator and the quality of the generated meshes are satisfactory.
引用
收藏
页码:435 / 459
页数:24
相关论文
共 50 条
  • [1] A posteriori error estimation for finite element discretization of parameter identification problems
    Becker, R
    Vexler, B
    [J]. NUMERISCHE MATHEMATIK, 2004, 96 (03) : 435 - 459
  • [2] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    [J]. SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [3] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [4] A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements
    Rannacher, R
    Vexler, B
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) : 1844 - 1863
  • [5] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [6] A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
    M. Afif
    B. Amaziane
    G. Kunert
    Z. Mghazli
    S. Nicaise
    [J]. Journal of Scientific Computing, 2010, 43 : 183 - 200
  • [7] A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
    Afif, M.
    Amaziane, B.
    Kunert, G.
    Mghazli, Z.
    Nicaise, S.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 43 (02) : 183 - 200
  • [8] A posteriori finite element error estimation for second-order hyperbolic problems
    Adjerid, S
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) : 4699 - 4719
  • [9] A posteriori error estimates for a nonconforming finite element discretization of the heat equation
    Nicaise, S
    Soualem, N
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (02): : 319 - 348
  • [10] A posteriori error estimation for generalized finite element methods
    Strouboulis, T
    Zhang, L
    Wang, D
    Babuska, I
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (9-12) : 852 - 879