Group divisible designs with large block sizes

被引:0
|
作者
Lijun Ji
机构
[1] Soochow University,Department of Mathematics
来源
关键词
Group divisible design; Finite field; Linearly independent; 05B05;
D O I
暂无
中图分类号
学科分类号
摘要
For positive integers n, k with 3≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le k\le n$$\end{document}, let X=F2n\{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\mathbb {F}_{2^n}\setminus \{0,1\}$$\end{document}, G={{x,x+1}:x∈X}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}=\{\{x,x+1\}:x\in X\}$$\end{document}, and Bk={x1,x2,…,xk}⊂X:∑i=1kxi=1,∑i∈Ixi≠1forany∅≠I⫋{1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_k=\left\{ \{x_1,x_2,\ldots ,x_k\}\!\subset \!X:\sum \limits _{i=1}^kx_i=1,\ \sum \limits _{i\in I}x_i\!\ne \!1\ \mathrm{for\ any}\ \emptyset \!\ne \!I\!\subsetneqq \!\{1,2,\ldots ,k\}\right\} $$\end{document}. Lee et al. used the inclusion–exclusion principle to show that the triple (X,G,Bk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,{\mathcal {G}},{\mathcal {B}}_k)$$\end{document} is a (k,λk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\lambda _k)$$\end{document}-GDD of type 22n-1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2^{n-1}-1}$$\end{document} for k∈{3,4,5,6,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \{3,4,5,6,7\}$$\end{document} where λk=∏i=3k-1(2n-2i)(k-2)!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k=\frac{\prod _{i=3}^{k-1}(2^n-2^i)}{(k-2)!}$$\end{document} (Lee et al. in Des Codes Cryptogr, https://doi.org/10.1007/s10623-017-0395-8, 2017). They conjectured that (X,G,Bk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,{\mathcal {G}},{\mathcal {B}}_k)$$\end{document} is also a (k,λk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\lambda _k)$$\end{document}-GDD of type 22n-1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2^{n-1}-1}$$\end{document} for any integer k≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 8$$\end{document}. In this paper, we use a similar construction and counting principles to show that there is a (k,λk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\lambda _k)$$\end{document}-GDD of type (q2-q)(qn-1-1)/(q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^2-q)^{(q^{n-1}-1)/(q-1)}$$\end{document} for any prime power q and any integers k, n with 3≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le k\le n$$\end{document} where λk=∏i=3k-1(qn-qi)(k-2)!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^i)}{(k-2)!}$$\end{document}. Consequently, their conjecture holds. Such a method is also generalized to yield a (k,λk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\lambda _k)$$\end{document}-GDD of type (qℓ+1-qℓ)(qn-ℓ-1)/(q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^{\ell +1}-q^{\ell })^{(q^{n-\ell }-1)/(q-1)}$$\end{document} where λk=∏i=3k-1(qn-qℓ+i-1)(k-2)!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^{\ell +i-1})}{(k-2)!}$$\end{document} and k+ℓ≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell \le n+1$$\end{document}.
引用
收藏
页码:2255 / 2260
页数:5
相关论文
共 50 条
  • [1] Group divisible designs with large block sizes
    Ji, Lijun
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) : 2255 - 2260
  • [2] A Family of Group Divisible Designs with Arbitrary Block Sizes
    Huang, Yu-pei
    Liu, Chia-an
    Chang, Yaotsu
    Lee, Chong-Dao
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06): : 1291 - 1302
  • [3] A construction of group divisible designs with block sizes 3 to 7
    Lee, Chong-Dao
    Chang, Yaotsu
    Liu, Chia-an
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (06) : 1281 - 1293
  • [4] Uniform group divisible designs with block sizes three and n
    Chee, YM
    Ling, ACH
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 421 - 445
  • [5] A construction of group divisible designs with block sizes 3 to 7
    Chong-Dao Lee
    Yaotsu Chang
    Chia-an Liu
    Designs, Codes and Cryptography, 2018, 86 : 1281 - 1293
  • [6] Uniform Group Divisible Designs with Block Sizes Three and n
    Yeow Meng Chee
    Alan C.H. Ling
    Graphs and Combinatorics, 2002, 18 : 421 - 445
  • [7] Group divisible designs with block size 4 and group sizes 2 and 5
    Abel, R. Julian R.
    Britz, Thomas
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (06) : 367 - 383
  • [8] Group divisible designs with block size 4 and group sizes 4 and 7
    Abel, R. Julian R.
    Britz, Thomas
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (06) : 328 - 346
  • [9] Some new group divisible designs with block size 4 and two or three group sizes
    Abel, R. Julian R.
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (08) : 614 - 628
  • [10] GROUP DIVISIBLE INCOMPLETE BLOCK DESIGNS
    BOSE, RC
    ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (02): : 311 - 312