Modularity of proof-nets

被引:0
|
作者
Roberto Maieli
Quintijn Puite
机构
[1] University of Rome “La Sapienza”,Department of Computer Science
[2] University “Roma Tre”,Department of Philosophy
关键词
Linear logic; Proof-nets; Modules; Weak (or linear) distributivity;
D O I
10.1007/s00153-004-0242-2
中图分类号
学科分类号
摘要
When we cut a multiplicative proof-net of linear logic in two parts we get two modules with a certain border. We call pretype of a module the set of partitions over its border induced by Danos-Regnier switchings. The type of a module is then defined as the double orthogonal of its pretype. This is an optimal notion describing the behaviour of a module: two modules behave in the same way precisely if they have the same type.
引用
收藏
页码:167 / 193
页数:26
相关论文
共 50 条
  • [1] Modularity of proof-nets - Generating the type of a module
    Maieli, R
    Puite, Q
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2005, 44 (02): : 167 - 193
  • [2] Polarized proof-nets: Proof-nets for LC (Extended abstract)
    Laurent, O
    [J]. TYPED LAMBDA CALCULI AND APPLICATIONS, 1999, 1581 : 213 - 227
  • [3] HOMOLOGY OF PROOF-NETS
    METAYER, F
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 1994, 33 (03) : 169 - 188
  • [4] Polarized proof-nets and λμ-calculus
    Laurent, O
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 290 (01) : 161 - 188
  • [5] Coherence for sharing proof-nets
    Guerrini, S
    Martini, S
    Masini, A
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 294 (03) : 379 - 409
  • [6] Concurrent construction of proof-nets
    Andreoli, JM
    Mazaré, L
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2003, 2803 : 29 - 42
  • [7] L-nets, strategies and proof-nets
    Curien, PL
    Faggian, C
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2005, 3634 : 167 - 183
  • [8] Expansion Nets: Proof-Nets for Propositional Classical Logic
    McKinley, Richard
    [J]. LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, 2010, 6397 : 535 - 549
  • [9] Proof-nets: The parallel syntax for proof-theory
    Girard, JY
    [J]. LOGIC AND ALGEBRA, 1996, 180 : 97 - 124
  • [10] Handsome proof-nets:: perfect matchings and cographs
    Retoré, C
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 294 (03) : 473 - 488