On monogenity of certain number fields defined by x8+ax+b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^8+ax+b$$\end{document}

被引:0
|
作者
H. Ben Yakkou
机构
[1] Sidi Mohamed ben Abdellah University,Faculty of Sciences Dhar El Mahraz
关键词
11R04; 11R16; 11R21; power integral basis; theorem of Ore; prime ideal factorization; common index divisor;
D O I
10.1007/s10474-022-01206-5
中图分类号
学科分类号
摘要
Let K=Q(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q} (\theta) $$\end{document} be the octic number field generated by a complex root θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} of a monic irreducible trinomial F(x)=x8+ax+b∈Z[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F(x)= x^8+ax+b \in \mathbb{Z}[x]$$\end{document}. In this paper, we study the monogenity of K. More precisely, we provide some explicit conditions on a and b for which K is not monogenic. As an application, if b≡-1(mod32)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\equiv -1 \pmod {32}$$\end{document}, then the pure number field K=Q(b8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K= \mathbb{Q}(\sqrt[8]{b})$$\end{document} is not monogenic. We also construct a class of irreducible trinomials whose roots generate monogenic octic number fields. Finally, we illustrate our results by giving some examples.
引用
收藏
页码:614 / 623
页数:9
相关论文
共 50 条