Accuracy of staircase approximations in finite-difference methods for wave propagation

被引:0
|
作者
Jon Häggblad
Olof Runborg
机构
[1] KTH Royal Institute of Technology,Department of Numerical Analysis
[2] Swedish e-Science Research Centre (SeRC),undefined
来源
Numerische Mathematik | 2014年 / 128卷
关键词
35L05; 65N22; 78M20;
D O I
暂无
中图分类号
学科分类号
摘要
While a number of increasingly sophisticated numerical methods have been developed for time-dependent problems in electromagnetics, the Yee scheme is still widely used in the applied fields, mainly due to its simplicity and computational efficiency. A fundamental drawback of the method is the use of staircase boundary approximations, giving inconsistent results. Usually experience of numerical experiments provides guidance of the impact of these errors on the final simulation result. In this paper, we derive exact discrete solutions to the Yee scheme close to the staircase approximated boundary, enabling a detailed theoretical study of the amplitude, phase and frequency errors created. Furthermore, we show how evanescent waves of amplitude O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} occur along the boundary. These characterize the inconsistencies observed in electromagnetic simulations and the locality of the waves explain why, in practice, the Yee scheme works as well as it does. The analysis is supported by detailed proofs and numerical examples.
引用
收藏
页码:741 / 771
页数:30
相关论文
共 50 条
  • [1] Accuracy of staircase approximations in finite-difference methods for wave propagation
    Haggblad, Jon
    Runborg, Olof
    [J]. NUMERISCHE MATHEMATIK, 2014, 128 (04) : 741 - 771
  • [2] Comparison of high-accuracy finite-difference methods for linear wave propagation
    Zingg, DW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02): : 476 - 502
  • [3] FINITE-DIFFERENCE APPROXIMATIONS TO LASER PROPAGATION EQUATIONS
    HILLION, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (18): : 1147 - 1149
  • [4] High-accuracy finite-difference schemes for linear wave propagation
    Zingg, DW
    Lomax, H
    Jurgens, H
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02): : 328 - 346
  • [5] Fourier finite-difference wave propagation
    Song, Xiaolei
    Fomel, Sergey
    [J]. GEOPHYSICS, 2011, 76 (05) : T123 - T129
  • [6] Numerical Accuracy of Finite-Difference Methods
    Ohnishi, Ryohei
    Wu, Di
    Yamaguchi, Takashi
    Ohnuki, Shinichiro
    [J]. 2018 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2018,
  • [7] APPLICATION OF FINITE-DIFFERENCE METHODS TO THE INVERSE PROBLEM OF WAVE-PROPAGATION
    HRON, M
    RAZAVY, M
    [J]. CANADIAN JOURNAL OF PHYSICS, 1979, 57 (11) : 1843 - 1851
  • [8] Quadratic regularization methods with finite-difference gradient approximations
    Grapiglia, Geovani Nunes
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 85 (03) : 683 - 703
  • [9] Quadratic regularization methods with finite-difference gradient approximations
    Geovani Nunes Grapiglia
    [J]. Computational Optimization and Applications, 2023, 85 : 683 - 703
  • [10] OCEAN ACOUSTIC PROPAGATION BY FINITE-DIFFERENCE METHODS
    LEE, D
    MCDANIEL, ST
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 14 (05) : 305 - &