Nanostructuring the electronic conducting La0.8Sr0.2MnO3−δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C通过电子导体阴极La0.8Sr0.2MnO3−δ的纳米化制备高性能质子导体固体氧化物燃料电池

被引:0
|
作者
Eman Husni Daʹas
Lei Bi
Samir Boulfrad
Enrico Traversa
机构
[1] King Abdullah University of Science and Technology (KAUST),Division of Physical Science and Engineering
[2] Qingdao University,Institute of Materials for Energy and Environment, Growing Base for State Key Laboratory, College of Materials Science and Engineering
[3] Hamad Bin Khalifa University (HBKU),College of Science & Engineering
[4] University of Electronic Science and Technology of China (UESTC),School of Energy Science and Engineering
来源
Science China Materials | 2018年 / 61卷
关键词
BaZrO; inkjet printing; impregnation; La; Sr; MnO; solid oxide fuel cells;
D O I
暂无
中图分类号
学科分类号
摘要
Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3−δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3 (BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).
引用
收藏
页码:57 / 64
页数:7
相关论文
共 26 条
  • [1] 通过电子导体阴极La0.8Sr0.2MnO3-δ的纳米化制备高性能质子导体固体氧化物燃料电池(英文)
    Eman Husni Daas
    毕磊
    Samir Boulfrad
    Enrico Traversa
    Science China Materials, 2018, 61 (01) : 57 - 64
  • [2] Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C
    Da'as, Eman Husni
    Bi, Lei
    Boulfrad, Samir
    Traversa, Enrico
    SCIENCE CHINA-MATERIALS, 2018, 61 (01) : 57 - 64
  • [3] 纳米氧化物La0.8Sr0.2MnO3的制备研究
    胡婕
    邵光杰
    王立民
    靳小秋
    褚君在
    物理测试, 2005, (04) : 17 - 20
  • [4] Investigations on Electrochemical Performance of a Proton-Conducting Ceramic-Electrolyte Fuel Cell with La0.8Sr0.2MnO3 Cathode
    Lim, Dae-Kwang
    Im, Ha-Ni
    Singh, Bhupendra
    Song, Sun-Ju
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : F547 - F554
  • [5] Performance and stability of La0.8Sr0.2MnO3 cathode promoted with palladium based catalysts in solid oxide fuel cells
    Babaei, Alireza
    Zhang, Lan
    Liu, Erjia
    Jiang, San Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (14) : 4781 - 4787
  • [6] 固体氧化物燃料电池Cr毒化La0.8Sr0.2MnO3-δ(LSM)阴极机理
    付长璟
    孙克宁
    张乃庆
    周德瑞
    高等学校化学学报, 2007, (09) : 1762 - 1764
  • [7] 中温固体氧化物燃料电池SUS430/La0.8Sr0.2MnO3复合连接板材料制备研究
    刘石明
    邢长生
    钱晓良
    肖建中
    张海鸥
    材料科学与工程学报, 2005, (01) : 4 - 7
  • [8] 中温固体氧化物燃料电池La0.8Sr0.2MnO3-Ba0.5Sr0.5Co0.8Fe0.2O3-σ阴极的制备研究
    刘波
    贾礼超
    欧阳瑞丰
    李箭
    陶瓷学报, 2019, 40 (01) : 99 - 102
  • [9] 固-溶法制备中温固体氧化物燃料电池高性能La0.8Sr0.2MnO3-Ba0.5Sr0.5Co0.8Fe0.2O3阴极(英文)
    孟丽
    王方中
    王傲
    蒲健
    池波
    李箭
    催化学报, 2014, 35 (01) : 38 - 42
  • [10] Enhanced performance of La0.8Sr0.2MnO3 cathode for solid oxide fuel cells by co-infiltration of metal and ceramic precursors
    Seyed-Vakili, Seyed Vahidreza
    Babaei, Alireza
    Ataie, Minoo
    Heshmati-Manesh, Saeed
    Abdizadeh, Hossein
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 : 433 - 441