On upper bounds for the variance of functions of random variables with weighted distributions

被引:2
|
作者
Goodarzi F. [1 ]
Amini M. [1 ]
Mohtashami Borzadaran G.R. [1 ]
机构
[1] Department of Statistics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad
关键词
Chernoff inequality; increasing failure rate; log-concave; size-biased distribution; Variance bounds;
D O I
10.1134/S1995080216040089
中图分类号
学科分类号
摘要
Cacoullos and Papathanasiou (1989) obtained a characterization for the distribution of a random variable via the upper bounds for the variance of a given function of that random variable. In this paper, on the basis of their works, we derive a characterization for the weighted distribution. Subsequently, by using the characterization and in terms of Chernoff-type inequalities, we find the upper bounds for the variance of a given function of the weighted random variable. Moreover, assuming that X is IFR [increasing failure rate] we compute an upper bound for the variance of this function. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:422 / 435
页数:13
相关论文
共 50 条
  • [1] ON UPPER-BOUNDS FOR THE VARIANCE OF FUNCTIONS OF RANDOM-VARIABLES
    CACOULLOS, T
    PAPATHANASIOU, V
    STATISTICS & PROBABILITY LETTERS, 1985, 3 (04) : 175 - 184
  • [2] On lower bounds for the variance of functions of random variables
    Faranak Goodarzi
    Mohammad Amini
    Gholam Reza Mohtashami Borzadaran
    Applications of Mathematics, 2021, 66 : 767 - 788
  • [3] On lower bounds for the variance of functions of random variables
    Goodarzi, Faranak
    Amini, Mohammad
    Borzadaran, Gholam Reza Mohtashami
    APPLICATIONS OF MATHEMATICS, 2021, 66 (05) : 767 - 788
  • [4] Some results on upper bounds for the variance of functions of the residual life random variables
    Goodarzi, F.
    Amini, M.
    Borzadaran, G. R. Mohtashami
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 320 : 30 - 42
  • [5] BOUNDS FOR THE VARIANCE OF FUNCTIONS OF RANDOM-VARIABLES BY ORTHOGONAL POLYNOMIALS AND BHATTACHARYA BOUNDS
    CACOULLOS, T
    PAPATHANASIOU, V
    STATISTICS & PROBABILITY LETTERS, 1986, 4 (01) : 21 - 23
  • [6] On Variance Upper Bounds for Unimodal Distributions
    Sharma, R.
    Bhandari, R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (21) : 4503 - 4513
  • [7] Bounds for sums of random variables when the marginal distributions and the variance of the sum are given
    Cheung, Ka Chun
    Vanduffel, Steven
    SCANDINAVIAN ACTUARIAL JOURNAL, 2013, 2013 (02) : 103 - 118
  • [8] Variance Bounds for Functions of Unimodal Random Variable
    Liu, Guoqing
    Li, Wenbo, V
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4765 - 4772
  • [9] On upper bounds for the variance of functions of the inactivity time
    Goodarzi, F.
    Amini, M.
    Borzadaran, G. R. Mohtashami
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 62 - 71
  • [10] Upper and lower bounds for sums of random variables
    Kaas, R
    Dhaene, J
    Goovaerts, MJ
    INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (02): : 151 - 168