Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization

被引:0
|
作者
Rohollah Yousefpour
机构
[1] University of Mazandaran,Department of Mathematical Sciences
来源
Numerical Algorithms | 2016年 / 72卷
关键词
Lipschitz functions; Wolfe conditions; Nonsmooth line search method; Nonsmooth BFGS method; 49J52; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a method is developed for solving nonsmooth nonconvex minimization problems. This method extends the classical BFGS framework. First, we generalize the Wolfe conditions for locally Lipschitz functions and prove that this generalization is well defined. Then, a line search algorithm is presented to find a step length satisfying the generalized Wolfe conditions. Next, the Goldstein e-subgradient is approximated by an iterative method and a descent direction is computed using a positive definite matrix. This matrix is updated using the BFGS method. Finally, a minimization algorithm based on the BFGS method is described. The algorithm is implemented in MATLAB and numerical results using it are reported.
引用
收藏
页码:57 / 90
页数:33
相关论文
共 50 条
  • [1] Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization
    Yousefpour, Rohollah
    NUMERICAL ALGORITHMS, 2016, 72 (01) : 57 - 90
  • [2] Steepest descent methods for multicriteria optimization
    Fliege, J
    Svaiter, BF
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (03) : 479 - 494
  • [3] Steepest descent methods for multicriteria optimization
    Jörg Fliege
    Benar Fux Svaiter
    Mathematical Methods of Operations Research, 2000, 51 : 479 - 494
  • [4] Inexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization
    Yang, Yang
    Pesavento, Marius
    Luo, Zhi-Quan
    Ottersten, Bjorn
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 947 - 961
  • [5] ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 2833 - 2852
  • [6] On the convergence of steepest descent methods for multiobjective optimization
    Cocchi, G.
    Liuzzi, G.
    Lucidi, S.
    Sciandrone, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 1 - 27
  • [7] On the convergence of steepest descent methods for multiobjective optimization
    G. Cocchi
    G. Liuzzi
    S. Lucidi
    M. Sciandrone
    Computational Optimization and Applications, 2020, 77 : 1 - 27
  • [8] Steepest Descent Methods with Generalized Distances for Constrained Optimization
    Alfredo N. Iusem
    Acta Applicandae Mathematica, 1997, 46 : 225 - 246
  • [9] Steepest descent methods with generalized distances for constrained optimization
    Iusem, AN
    ACTA APPLICANDAE MATHEMATICAE, 1997, 46 (02) : 225 - 246
  • [10] A projection type steepest descent neural network for solving a class of nonsmooth optimization problems
    Ebadi, M. J.
    Hosseini, Alireza
    Hosseini, M. M.
    NEUROCOMPUTING, 2017, 235 : 164 - 181